满分5 > 初中数学试题 >

已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD...

已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD上的点.
(1)如图①,若AP⊥PQ,BP=2,求CQ的长;
(2)如图②,若manfen5.com 满分网,且E,F,G分别为AP,PQ,PC的中点,求四边形EPGF的面积.

manfen5.com 满分网
(1)、由同角的余角相等可得∠APB=∠PQC,故△ABP∽△PCQ,有,代入BP,AB,PC的值求得CQ的值; (2)、取BP的中点H,连接EH,由三角形的中位线的性质可得四边形EHGF是直角梯形,由,设CQ=a,有BP=2a,用含a的代数式表示出EH,FG,HP,HG,两用梯形和三角形的面积公式求得S四边形EPGF=S梯形EHGF-S△EHP的值. 【解析】 (1)∵四边形ABCD是矩形 ∴∠B=∠C=90°, ∴∠CPQ+∠PQC=90°, ∵AP⊥PQ, ∴∠CPQ+∠APB=90°, ∴∠APB=∠PQC, ∴△ABP∽△PCQ, ∴,即, ∴CQ=3; (2)解法一:取BP的中点H,连接EH,由, 设CQ=a,则BP=2a, ∵E,F,G,H分别为AP,PQ,PC,BP的中点, ∴EH∥AB,FG∥CD, 又∵AB∥CD,∠B=∠C=90°, ∴EH∥FG,EH⊥BC,FG⊥BC, ∴四边形EHGF是直角梯形, ∴EH=AB=2,FG=CQ=a,HP=BP=a,HG=HP+PG=BC=4, ∴S梯形EHGF=(EH+FG)•HG=(2+a)•4=4+a,S△EHP=HP•EH=a•2=a, ∴S四边形EPGF=S梯形EHGF-S△EHP=4+a-a=4; 解法二:连接AQ,由=2,设CQ=a,则BP=2a,DQ=4-a,PC=8-2a,S△APQ=S矩形ABCD-S△ABP-S△PCQ-S△ADQ =4×8-•2a•4-(8-2a)a-×8(4-a) =a2-4a+16 ∵E,F,G分别是AP,PQ,PC的中点 ∴EF∥AQ,EF=AQ.∴△PEF∽△PAQ ∴,S△PEF=S△APQ=(a2-4a+16) 同理:S△PFG=S△PCQ=a(8-2a) ∴S四边形EPGF=S△PEF+S△PFG =(a2-4a+16)+a(8-2a)=4.
复制答案
考点分析:
相关试题推荐
当x=2时,抛物线y=ax2+bx+c取得最小值-1,并且抛物线与y轴交于点C(0,3),与x轴交于点A、B.
(1)求该抛物线的关系式;
(2)若点M(x,y1),N(x+1,y2)都在该抛物线上,试比较y1与y2的大小;
(3)D是线段AC的中点,E为线段AC上一动点(A、C两端点除外),过点E作y轴的平行线EF与抛物线交于点F.问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,则说明理由.

manfen5.com 满分网 查看答案
已知方程组manfen5.com 满分网的解为x=3,y=m,求a,m的值.
查看答案
如图,AB是⊙O的直径,AE平分∠BAF交⊙O于点E,过点E作直线与AF垂直,交AF延长线于点D,交AB延长线于点C.
(1)判断CD是否是⊙O的切线,并说明理由.
(2)若manfen5.com 满分网,⊙O的半径为1,求DE的长.

manfen5.com 满分网 查看答案
已知点A为函数manfen5.com 满分网在第一象限内的点,且A点的纵坐标是横坐标的manfen5.com 满分网倍.
(1)求点A的坐标,
(2)点B为y轴正半轴上的一点,且OB=OA,求经过A、B两点的一次函数关系式.
查看答案
初中毕业后,毕业生甲.乙.丙三人面临三种选择:A:就读高中;B:就读职(技)校;C:进入社会就业,其中甲一定读高中,问:(列树形图或者画表格)
(1)三人都就读高中的概率;
(2)恰好只有两人选择相同的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.