已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD上的点.
(1)如图①,若AP⊥PQ,BP=2,求CQ的长;
(2)如图②,若
,且E,F,G分别为AP,PQ,PC的中点,求四边形EPGF的面积.
考点分析:
相关试题推荐
当x=2时,抛物线y=ax
2+bx+c取得最小值-1,并且抛物线与y轴交于点C(0,3),与x轴交于点A、B.
(1)求该抛物线的关系式;
(2)若点M(x,y
1),N(x+1,y
2)都在该抛物线上,试比较y
1与y
2的大小;
(3)D是线段AC的中点,E为线段AC上一动点(A、C两端点除外),过点E作y轴的平行线EF与抛物线交于点F.问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,则说明理由.
查看答案
已知方程组
的解为x=3,y=m,求a,m的值.
查看答案
如图,AB是⊙O的直径,AE平分∠BAF交⊙O于点E,过点E作直线与AF垂直,交AF延长线于点D,交AB延长线于点C.
(1)判断CD是否是⊙O的切线,并说明理由.
(2)若
,⊙O的半径为1,求DE的长.
查看答案
已知点A为函数
在第一象限内的点,且A点的纵坐标是横坐标的
倍.
(1)求点A的坐标,
(2)点B为y轴正半轴上的一点,且OB=OA,求经过A、B两点的一次函数关系式.
查看答案
初中毕业后,毕业生甲.乙.丙三人面临三种选择:A:就读高中;B:就读职(技)校;C:进入社会就业,其中甲一定读高中,问:(列树形图或者画表格)
(1)三人都就读高中的概率;
(2)恰好只有两人选择相同的概率.
查看答案