满分5 > 初中数学试题 >

在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点. (1)如图1,E...

在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
manfen5.com 满分网
(1)延长DF交AB于点G,根据三角形中位线的判定得出点G为AB的中点,根据中位线的性质及已知条件AC=BC,得出DC=DG,从而EC=FG,易证∠1=∠2=90°-∠DFC,∠CEF=∠FGH=135°,由AAS证出△CEF≌△FGH.∴CF=FH. (2)通过证明△CEF≌△FGH得出. 【解析】 (1)FH与FC的数量关系是:FH=FC. 证明如下:延长DF交AB于点G, 由题意,知∠EDF=∠ACB=90°,DE=DF, ∴DG∥CB, ∵点D为AC的中点, ∴点G为AB的中点,且, ∴DG为△ABC的中位线, ∴. ∵AC=BC, ∴DC=DG, ∴DC-DE=DG-DF, 即EC=FG. ∵∠EDF=90°,FH⊥FC, ∴∠1+∠CFD=90°,∠2+∠CFD=90°, ∴∠1=∠2. ∵△DEF与△ADG都是等腰直角三角形, ∴∠DEF=∠DGA=45°, ∴∠CEF=∠FGH=135°, ∴△CEF≌△FGH, ∴CF=FH. (2)FH与FC仍然相等.
复制答案
考点分析:
相关试题推荐
如图,已知BE⊥AD,CF⊥AD,且BE=CF.
(1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论;
(2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件______

manfen5.com 满分网 查看答案
已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.
求证:AD=AE.

manfen5.com 满分网 查看答案
如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:______,并给予证明.

manfen5.com 满分网 查看答案
已知△ABC,利用直尺各圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:
(1)作∠ABC的平分线BD交AC于点D;
(2)作线段BD的垂直平分线交AB于点E,交BC于点F.由(1)、(2)可得:线段EF与线段BD的关系为______
manfen5.com 满分网
查看答案
如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为斜边并且在AB的同一侧作等腰直角△ACD和△BCE,连接AE交CD于点M,连接BD交CE于点N,给出以下三个结论:①MN∥AB;②manfen5.com 满分网=manfen5.com 满分网+manfen5.com 满分网;③MN≤manfen5.com 满分网AB,其中正确结论的个数是( )
manfen5.com 满分网
A.0
B.1
C.2
D.3
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.