满分5 > 初中数学试题 >

已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标...

已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MCB的面积S△MCB

manfen5.com 满分网
(1)将已知的三点坐标代入抛物线中,即可求得抛物线的解析式. (2)可根据抛物线的解析式先求出M和B的坐标,由于三角形MCB的面积无法直接求出,可将其化为其他图形面积的和差来解.过M作ME⊥y轴,三角形MCB的面积可通过梯形MEOB的面积减去三角形MCE的面积减去三角形OBC的面积求得. 【解析】 (1)依题意:, 解得 ∴抛物线的解析式为y=-x2+4x+5 (2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1, ∴B(5,0). 由y=-x2+4x+5=-(x-2)2+9,得M(2,9) 作ME⊥y轴于点E, 可得S△MCB=S梯形MEOB-S△MCE-S△OBC=(2+5)×9-×4×2-×5×5=15.
复制答案
考点分析:
相关试题推荐
已知:在△ABC中,BC=20,高AD=16,内接矩形EFGH的顶点E、F在BC上,G、H分别在AC、AB上,求内接矩形EFGH的最大面积.

manfen5.com 满分网 查看答案
某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
查看答案
已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.求证:DE是⊙O的切线.

manfen5.com 满分网 查看答案
如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.

manfen5.com 满分网 查看答案
如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A半径为2,⊙B半径为1,需使⊙A与静止的⊙B相切,那么⊙A由图示的位置向左平移    个单位长.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.