定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S
n.
①若△DEF的面积为1000,当n为何值时,3<S
n<4?
(请用计算器进行探索,要求至少写出二次的尝试估算过程)
②当n>1时,请写出一个反映S
n-1,S
n,S
n+1之间关系的等式(不必证明)
考点分析:
相关试题推荐
产自庆元县百山祖山麓一带的“沁园春”茶叶是丽水市知名品牌.现该品牌旗下一茶厂有采茶工人30人,每人每天采鲜茶叶“炒青”20千克或鲜茶叶“毛尖”5千克.已知生产每千克成品茶叶所需鲜茶叶和销售每千克成品茶叶所获利润如下表:
类别 | 生产1千克成品茶叶所需鲜茶叶(千克) | 销售1千克成品茶叶所获利润(元) |
炒青 | 4 | 40 |
毛尖 | 5 | 120 |
(1)若安排x人采“炒青”,则可采鲜茶叶“炒青”______千克,采鲜茶叶“毛尖”______千克.
(2)若某天该茶厂工人生产出成品茶叶102千克,则安排采鲜茶叶“炒青”与“毛尖”各几人?
(3)根据市场销售行情,该茶厂的生产能力是每天生产成品茶叶不少于100千克且不超过110千克,如果每天生产的茶叶全部销售,如何分配采茶工人能使获利最大?最大利润是多少?
查看答案
我县实施新课程改革后,学习的自主字习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,张老师一共调査了______名同学,其中C类女生有______名,D类男生有______名;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案
如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.
(1)求证:∠OPB=∠AEC;
(2)若点C为半圆
的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.
查看答案
已知二次函数y=x
2+2x+m的图象C
1与x轴有且只有一个公共点.
(1)求C
1的顶点坐标;
(2)将C
1向下平移若干个单位后,得抛物线C
2,如果C
2与x轴的一个交点为A(-3,0),求C
2的函数关系式,并求C
2与x轴的另一个交点坐标.
查看答案
如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?
(结果精确到0.1cm,参考数据:
≈1.732)
查看答案