先连接AC、BD,由于E、H是AB、AD中点,利用三角形中位线定理可知EH∥BD,同理易得FG∥BD,那么有EH∥FG,同理也有EF∥HG,易证四边形EFGH是平行四边形,而四边形ABCD是菱形,利用其性质有AC⊥BD,就有∠AOB=90°,再利用
EF∥AC以及EH∥BD,两次利用平行线的性质可得∠HEF=∠BME=90°,即可得证.
【解析】
如右图所示,四边形ABCD是菱形,顺次连接个边中点E、F、G、H,连接AC、BD,
∵E、H是AB、AD中点,
∴EH∥BD,
同理有FG∥BD,
∴EH∥FG,
同理EF∥HG,
∴四边形EFGH是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠AOB=90°,
又∵EF∥AC,
∴∠BME=90,
∵EH∥BD,
∴∠HEF=∠BME=90°,
∴四边形EFGH是矩形.
故选A.