满分5 > 初中数学试题 >

已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点...

已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.
(1)求证:△BCE≌△DCF;
(2)OG与BF有什么数量关系?证明你的结论;
(3)若GE•GB=4-2manfen5.com 满分网,求正方形ABCD的面积.

manfen5.com 满分网
(1)根据全等三角形的判定方法寻找条件. (2)因为O是BD的中点,结合已知条件,知道证明G是DF中点即可. (3)要求正方形的面积,求出边长的平方即可,为此要找到一个关于边长的方程,因为已知中有直角,根据勾股定理,结合已知条件,列出方程,求出答案. (1)证明:在△BCE与△DCF中, ∵, ∴△BCE≌△DCF. (2)【解析】 OG=BF. 理由如下:∵△BCE≌△DCF, ∴∠CEB=∠F, ∵∠CEB=∠DEG, ∴∠F=∠DEG, ∵∠F+∠GDE=90°, ∴∠DEG+∠GDE=90°, ∴BG⊥DF, ∴∠BGD=∠BGF, 又∵BG=BG,∠DBG=∠FBG, ∴△BGD≌△BGF, ∴DG=GF, ∵O为正方形ABCD的中心, ∴DO=OB, ∴OG是△DBF的中位线, ∴OG=BF. (3)【解析】 设BC=x,则DC=x,BD=, 由(2)知,△BGF≌△BGD, ∴BF=BD, ∴CF=(-1)x, ∵∠DGB=∠EGD,∠DBG=∠EDG, ∴△GDB∽△GED, ∴=, ∴GD2=GE•GB=4-2, ∵DC2+CF2=(2GD)2, ∴x2+(-1)2x2=4(4-2), (4-2)x2=4(4-2), x2=4, 正方形ABCD的面积是4个平方单位.
复制答案
考点分析:
相关试题推荐
如图,已知矩形ABCD,以A为圆心,AD为半径的圆交AC、AB于M、E,CE的延长线交⊙A于F,CM=2,AB=4.(1)求⊙A的半径;(2)求CE的长和△AFC的面积.

manfen5.com 满分网 查看答案
已知方程x2+(m+1)x-3=0和方程x2-4x-m=0有一个公共根,求这两个非公共根的和.
查看答案
(1)化简:(manfen5.com 满分网+manfen5.com 满分网)÷manfen5.com 满分网manfen5.com 满分网
(2)解方程组manfen5.com 满分网
查看答案
如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,Dn,分别记△BD1E1,△BD2E2,△BD3E3,…,△BDnEn的面积为S1,S2,S3,…Sn.则Sn=    S△ABC(用含n的代数式表示).
manfen5.com 满分网 查看答案
如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有    个.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.