满分5 > 初中数学试题 >

如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边...

如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
manfen5.com 满分网
(1)若∠1=70°,求∠MKN的度数;
(2)△MNK的面积能否小于manfen5.com 满分网?若能,求出此时∠1的度数;若不能,试说明理由;
(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.
(1)根据矩形的性质和折叠的性质求出∠KNM,∠KMN的度数,根据三角形内角和即可求解; (2)过M点作ME⊥DN,垂足为E,通过证明NK>1,由三角形面积公式可得△MNK的面积不可能小于; (3)分情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合;情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC两种情况讨论求解. 【解析】 (1)∵四边形ABCD是矩形, ∴AM∥DN. ∴∠KNM=∠1. ∵∠1=70°, ∴∠KNM=∠KMN=∠1=70°, ∴∠MKN=40°. (2)不能. 过M点作ME⊥DN,垂足为E,则ME=AD=1. ∵∠KNM=∠KMN, ∴MK=NK, 又∵MK≥ME, ∴NK≥1. ∴△MNK的面积=NK•ME≥. ∴△MNK的面积不可能小于. (3)分两种情况: 情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合. MK=MB=x,则AM=5-x. 由勾股定理得12+(5-x)2=x2, 解得x=2.6. ∴MD=ND=2.6. S△MNK=S△MND==1.3. 情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC. MK=AK=CK=x,则DK=5-x. 同理可得MK=NK=2.6. ∵MD=1, ∴S△MNK==1.3. △MNK的面积最大值为1.3.
复制答案
考点分析:
相关试题推荐
施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).
(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;
(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;
(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.
manfen5.com 满分网
查看答案
如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.
(1)求证:CA是圆的切线;
(2)若点E是BC上一点,已知BE=6,tan∠ABC=manfen5.com 满分网,tan∠AEC=manfen5.com 满分网,求圆的直径.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,5),B(-4,3),C(-1,1).点P(m,n)是△ABC内部一点,平移△ABC得到△A1B1C1,使点P(m,n)移到点P′(m+3,n-2)处.
(1)直接写出点A1,B1,C1的坐标;
(2)将△ABC绕点C逆时针旋转90°得到△A2B2C2,画出△A2B2C2
(3)直接写出△A2B2C2的面积.

manfen5.com 满分网 查看答案
如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).记s=x+y.
(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;
(2)李刚为甲、乙两人设计了一个游戏:当s<6时甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?

manfen5.com 满分网 查看答案
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.