满分5 >
初中数学试题 >
世界文化遗产长城总长约6 700 000m,用科学记数法可表示为( ) A.6....
世界文化遗产长城总长约6 700 000m,用科学记数法可表示为( )
A.6.7×105m
B.6.7×10-5m
C.6.7×106m
D.6.7×10-6m
考点分析:
相关试题推荐
已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax
2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
查看答案
如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
(1)若∠1=70°,求∠MKN的度数;
(2)△MNK的面积能否小于
?若能,求出此时∠1的度数;若不能,试说明理由;
(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.
查看答案
施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).
(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;
(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;
(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.
查看答案
如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.
(1)求证:CA是圆的切线;
(2)若点E是BC上一点,已知BE=6,tan∠ABC=
,tan∠AEC=
,求圆的直径.
查看答案
如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,5),B(-4,3),C(-1,1).点P(m,n)是△ABC内部一点,平移△ABC得到△A
1B
1C
1,使点P(m,n)移到点P′(m+3,n-2)处.
(1)直接写出点A
1,B
1,C
1的坐标;
(2)将△ABC绕点C逆时针旋转90°得到△A
2B
2C
2,画出△A
2B
2C
2;
(3)直接写出△A
2B
2C
2的面积.
查看答案