满分5 > 初中数学试题 >

已知:抛物线y=ax2+bx+c(a≠0)的顶点M的坐标为(1,-2)与y轴交于...

已知:抛物线y=ax2+bx+c(a≠0)的顶点M的坐标为(1,-2)与y轴交于点C(0,manfen5.com 满分网),与x轴交于A、B两点(A在B的左边).
(1)求此抛物线的表达式;
(2)点P是线段OB上一动点(不与点B重合),点Q在线段BM上移动且∠MPQ=45°,设线段OP=x,MQ=manfen5.com 满分网1,求y1与x的函数关系式,并写出自变量x的取值范围;
(3)①在(2)的条件下是否存在点P,使△PQB是PB为底的等腰三角形,若存在试求点Q的坐标,若不存在说明理由;
②在(1)中抛物线的对称轴上是否存在点F,使△BMF是等腰三角形,若存在直接写出所有满足条件的点F的坐标.

manfen5.com 满分网
(1)设抛物线的表达式为y=a(x-1)2-2,将点C的坐标代入即可得出答案; (2)先证明△MPQ∽△MPB,根据相似的性质列等式,求y1与x的函数关系式; (3)①假设存在满足条件的P点,根据条件△PQB是PB为底的等腰三角形,作PB的垂直平分线交BM于Q,QP=QB.求出P点和Q点坐标;②根据△BMF是等腰三角形,只要点F使得该三角形的两边相等即可. 【解析】 (1)∵抛物线的顶点为M(1,-2)可设y=a(x-1)2-2, 由点(0,)得:, ∴. ∴,即. (2)在x2=3中,由y=0,得, 解得:x1=-1,x2=3, ∴A为(-1,0),B为(3,0). ∵M(1,-2), ∴∠MBO=45°,MB=, ∴∠MPQ=45°∠MBO=∠MPQ, 又∵∠M=∠M, ∴△MPQ∽△MPB, ∴, ∴, 即, ∴(0≤x<3). (3)①存在点Q,使QP=QB,即△PQB是以PB为底的等腰三角形, 作PB的垂直平分线交BM于Q,则QP=QB. ∴∠QPB=∠MBP=45° 又∵∠MPQ=45°, ∴此时MP⊥x轴, ∴P为(1,0), ∴PB=2. ∴Q的坐标为(2,-1). ②使△BMF是等腰三角形的F点有: F1(1,0),F2(1,),F3(1,),F4(1,2).
复制答案
考点分析:
相关试题推荐
如图,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2,BC=4,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,连接DE、CE,将△DCE绕点C顺时针旋转90°,得△BCF,连接EF.判断EF与CE的数量关系,并证明你的结论;
(3)在(2)的条件下,当CE=2BE,∠BEC=135°时,求cos∠BFE的值.

manfen5.com 满分网 查看答案
如图,一次函数的图象与反比例函数manfen5.com 满分网的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<-1时,一次函数值大于反比例函数值,当x>-1时,一次函数值小于反比例函数值.
(1)求一次函数的解析式;
(2)设函数y2=manfen5.com 满分网的图象与manfen5.com 满分网的图象关于y轴对称,在y2=manfen5.com 满分网的图象上取一点P(P点的横坐标大于2),过P作PQ丄x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

manfen5.com 满分网 查看答案
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润B型利润
甲店200170
乙店160150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
查看答案
如图,在梯形ABCD中,AD∥BC,AB=CD,E是AD的中点,AD=4,BC=6,点P是BC边上的动点(不与点B重合),PE与BD相交于点O,设PB的长为x.
(1)当P点在BC边上运动时,求证:△BOP∽△DOE.
(2)当x=______时,四边形ABPE是平行四边形;当x=______时,四边形ABPE是直角梯形;
(3)当P在BC上运动的过程中,四边形ABPE会不会是等腰梯形?试说明理由.

manfen5.com 满分网 查看答案
某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的频数是12.请你回答:
(1)本次活动共有______件作品参赛;
(2)上交作品最多的组有作品______件;
(3)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?
(4)对参赛的每一件作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出一张卡片,抽到第四组作品的概率是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.