考点分析:
相关试题推荐
如图,已知抛物线y=-
x
2+x+4交x轴的正半轴于点A,交y轴于点B.
(1)求A、B两点的坐标,并求直线AB的解析式;
(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;
(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.
查看答案
如图1,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.
(1)操作:如图2,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).
求证:BH•GD=BF
2(2)操作:如图3,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.
探究:FD+DG=______.请予证明.
查看答案
对于任何实数
,我们规定符号的意义是
=ad-bc.
(1)按照这个规定请你计算
的值;
(2)按照这个规定请你计算:当x
2-3x+1=0时,
的值.
查看答案
如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.
查看答案
如图,一次函数的图象与反比例函数
的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<-1时,一次函数值大于反比例函数值,当x>-1时,一次函数值小于反比例函数值.
(1)求一次函数的解析式;
(2)设函数y
2=
的图象与
的图象关于y轴对称,在y
2=
的图象上取一点P(P点的横坐标大于2),过P作PQ丄x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.
查看答案