满分5 > 初中数学试题 >

某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件...

某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润B型利润
甲店200170
乙店160150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
(1)首先设甲店B型产品有(70-x),乙店A型有(40-x)件,B型有(x-10)件,列出不等式方程组求解即可; (2)由(1)可得几种不同的分配方案; (3)依题意得出W与a的关系式,解出不等式方程后可得出使利润达到最大的分配方案. 【解析】 依题意,甲店B型产品有(70-x)件,乙店A型有(40-x)件,B型有(x-10)件,则 (1)W=200x+170(70-x)+160(40-x)+150(x-10)=20x+16800. 由解得10≤x≤40.(2分) (2)由W=20x+16800≥17560, ∴x≥38. ∴38≤x≤40,x=38,39,40. ∴有三种不同的分配方案. ①x=38时,甲店A型38件,B型32件,乙店A型2件,B型28件; ②x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件; ③x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件. (3)依题意:W=(200-a)x+170(70-x)+160(40-x)+150(x-10)=(20-a)x+16800. ①当0<a<20时,x=40,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大; ②当a=20时,10≤x≤40,符合题意的各种方案,使总利润都一样; ③当20<a<30时,x=10,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大.(8分)
复制答案
考点分析:
相关试题推荐
已知:如图,在Rt△ABC中,∠ACB=90°,AC=4,manfen5.com 满分网,以AC为直径的⊙O交Amanfen5.com 满分网B于点D,点E是BC的中点,OB,DE相交于点F.
(1)求证:DE是⊙O的切线;
(2)求EF:FD的值.
查看答案
某生活小区的居民筹集资金1600元,计划在一块上、下底分别为10m,20m的梯形空地上种植花木(如图1)
(1)他们在△AMD和△BMC地带上种植太阳花,单价为8元/m2,当△AMD地带种满花后(图1中阴影部分),共花了160元,请计算种满△BMC地带所需的费用;
(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m2和10元/m2,应选择哪种花木,刚好用完所筹集的资金;
(3)若梯形ABCD为等腰梯形,面积不变(如图2),请你设计一种花坛图案,即在梯形内找到一点P,使得△APB≌△DPC且S△APD=S△BPC,并说出你的理由.

manfen5.com 满分网 查看答案
如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;
(1)求证:B′E=BF;
(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.

manfen5.com 满分网 查看答案
如图,F、C是线段AD上的两点,AB∥DE,BC∥EF,AF=DC,连接AE、BD,求证:四边形ABDE是平行四边形.

manfen5.com 满分网 查看答案
有两个可以自由转动的均匀转盘A、B,分别被分成4等份、3等份,并在每份内均标有数字,如图所示.王扬和刘菲同学用这两个转盘做游戏,游戏规则如下:
①分别转动转盘A与B;
②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止).
③如果和为0,王扬获胜;否则刘非获胜.
(1)用列表法(或树状图)求王扬获胜的概率;
(2)你认为这个游戏对双方公平吗?请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.