(1)在遇到问题:“钟面上,如果把时针与分针看作是同一平面内的两条线段,在2:00~2:15之间,时针与分针重合的时刻是多少?”时,小明尝试运用建立函数关系的方法:
①恰当选取变量x和y.小明设2点钟之后经过x min(0≤x≤15),时针、分针分别与竖轴线(即经过表示“12”和“6”的点的直线,如图1)所成的角的度数为y
1°、y
2°;
②确定函数关系.由于时针、分针在单位时间内转动的角度不变,因此既可以直接写出y
1、y
2关于x的函数关系式,也可以画出它们的图象.小明选择了后者,画出了图2;
③根据题目的要求,利用函数求解.本题中小明认为求出两个图象交点的横坐标就可以解决问题.
请你按照小明的思路解决这个问题.
(2)请运用建立函数关系的方法解决问题:钟面上,如果把时针与分针看作是同一平面内的两条线段,在7:30~8:00之间,时针与分针互相垂直的时刻是多少?
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB边上且DE⊥BE.
(1)判断直线AC与△DBE外接圆的位置关系,并说明理由;
(2)若AD=6,AE=6
,求BC的长.
查看答案
如图是运动会开幕式火炬点燃方式在平面直角坐标系中的示意图,位于点O正上方2米处的发射装置A可以向目标点火炬盆C发射一个火球点燃火炬,该火球运行的轨迹为一抛物线,当火球运行到距出发点A水平距离为12米时达到离地面最大高度20米(图中B点).火炬盆C距发射装置A的水平距离为20米,在A点处测得目标点火炬盆C的仰角为α,且tanα=
.
(1)求火球运行轨迹的抛物线对应的函数解析式;
(2)说明按(1)中轨迹运行的火球能否点燃目标C?
查看答案
去冬今春,我国西南地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井大的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?
查看答案
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.
(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.
查看答案
在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出2个球,请通过列表或树状图求摸出2个球都是白球的概率;
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,则2次摸出的球都是白色的概率为______;
(3)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为______.
查看答案