满分5 > 初中数学试题 >

如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥...

如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;
(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.
①求证:AG⊥CH;
②当AD=4,DG=manfen5.com 满分网时,求CH的长.
manfen5.com 满分网
(1)寻找AG、CE所在的两个三角形全等的条件,证明全等即可; (2)①由△AGD≌△CED,可知∠1=∠2,利用对顶角相等及互余关系证明垂直; ②连接GE交AD于P,根据S△AGD+S△ACD=S四边形ACDG=S△ACG+S△CGD,再分别表示四个三角形的底和高,列方程求CH. 【解析】 (1)AG=CE成立. 证明:∵四边形ABCD、四边形DEFG是正方形, ∴GD=DE,AD=DC,(1分) ∠GDE=∠ADC=90°. ∴∠GDA=90°-∠ADE=∠EDC.                     (2分) ∴△AGD≌△CED. ∴AG=CE.                                     (3分) (2)①类似(1)可得△AGD≌△CED, ∴∠1=∠2.                                    (4分) 又∵∠HMA=∠DMC, ∴∠AHM=∠ADC=90°, 即AG⊥CH.                                    (5分) ②连接GE,交AD于P,连接CG, 由题意有, ∴AP=3,.                            (8分) ∵EG⊥AD,CD⊥AD,∴EG∥CD, ∴以CD为底边的△CDG的高为PD=1,(延长CD画高) S△AGD+S△ACD=S四边形ACDG=S△ACG+S△CGD ∴4×1+4×4=×CH+4×1 ∴CH=.                                   (10分)
复制答案
考点分析:
相关试题推荐
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

manfen5.com 满分网 查看答案
如图,从一个直径是2的圆形铁皮中剪下一个圆心角为90°的扇形
(1)求这个扇形的面积(结果保留π)
(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由
(3)当⊙O的半径R(R>0)为任意值时,(2)中的结论是否仍然成立?请说明理由.

manfen5.com 满分网 查看答案
2010年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解,B:一般了解,C:了解较多,D:熟悉).请你根据图中提供的信息解答以下问题:
(1)求该班共有多少名学生;
(2)在条形统计图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;
(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少?

manfen5.com 满分网 查看答案
如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.
求证:
(1)△AFD≌△CEB;
(2)四边形ABCD是平行四边形.

manfen5.com 满分网 查看答案
(1)计算:manfen5.com 满分网
(2)先化简,再求值:manfen5.com 满分网;其中a=1,b=-2.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.