满分5 > 初中数学试题 >

如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一...

如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据题意作辅助线过点B作BC⊥y轴于点C,根据等边三角形的性质即可求出点B的坐标, (2)根据∠PAQ=∠OAB=60°,可知∠PAO=∠QAB,得出△APO≌△AQB总成立,得出当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值90°, (3)根据点P在x的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果. (1)【解析】 过点B作BC⊥y轴于点C, ∵A(0,2),△AOB为等边三角形, ∴AB=OB=2,∠BAO=60°, ∴BC=,OC=AC=1, 即B(); (2)证明:当点P在x轴上运动(P不与O重合)时,不失一般性, ∵∠PAQ=∠OAB=60°, ∴∠PAO=∠QAB, 在△APO和△AQB中, ∵AP=AQ,∠PAO=∠QAB,AO=AB ∴△APO≌△AQB总成立, ∴∠ABQ=∠AOP=90°总成立, ∴当点P在x轴上运动(P不与O重合)时,∠ABQ为定值90°; (3)【解析】 由(2)可知,点Q总在过点B且与AB垂直的直线上,可见AO与BQ不平行. ①当点P在x轴负半轴上时,点Q在点B的下方, 此时,若AB∥OQ,四边形AOQB即是梯形, 当AB∥OQ时,∠BQO=90°,∠BOQ=∠ABO=60°. 又OB=OA=2,可求得BQ=, 由(2)可知,△APO≌△AQB, ∴OP=BQ=, ∴此时P的坐标为(). ②当点P在x轴正半轴上时,点Q在B的上方, 此时,若AQ∥OB,四边形AOBQ即是梯形, 当AQ∥OB时,∠ABQ=90°,∠QAB=∠ABO=60°. 又AB=2,可求得BQ=, 由(2)可知,△APO≌△AQB, ∴OP=BQ=, ∴此时P的坐标为(). 综上,P的坐标为()或().
复制答案
考点分析:
相关试题推荐
如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;
(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.
①求证:AG⊥CH;
②当AD=4,DG=manfen5.com 满分网时,求CH的长.
manfen5.com 满分网
查看答案
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

manfen5.com 满分网 查看答案
如图,从一个直径是2的圆形铁皮中剪下一个圆心角为90°的扇形
(1)求这个扇形的面积(结果保留π)
(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由
(3)当⊙O的半径R(R>0)为任意值时,(2)中的结论是否仍然成立?请说明理由.

manfen5.com 满分网 查看答案
2010年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解,B:一般了解,C:了解较多,D:熟悉).请你根据图中提供的信息解答以下问题:
(1)求该班共有多少名学生;
(2)在条形统计图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;
(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少?

manfen5.com 满分网 查看答案
如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.
求证:
(1)△AFD≌△CEB;
(2)四边形ABCD是平行四边形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.