满分5 > 初中数学试题 >

阅读下列材料,然后解答问题. 经过正四边形(即正方形)各顶点的圆叫作这个正四边形...

阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形.
如图,已知正四边形ABCD的外接圆⊙O,⊙O的面积为S1,正四边形ABCD的面积为S2,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H.设由OE、OF、manfen5.com 满分网及正四边形ABCD的边围成的图形(图中的阴影部分)的面积为S.①manfen5.com 满分网
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:S=______(用含S1、S2的代数式表示);
(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.
(1)根据正方形的圆的对称性,显然阴影部分的面积等于扇形OEF的面积减去三角形OEF的面积,即圆面积的减去正方形的面积的; (2)显然此时扇形OEF的面积仍是圆面积的,四边形OGBH的面积仍是正方形的面积的,故(1)中结论仍成立; (3)可以作OP⊥AB,OQ⊥BC,利用全等的知识即可证明四边形OGBH的面积和(2)中四边形的面积相等,故结论仍成立. 【解析】 (1)根据图形的对称性,得 S=; (2)结论仍成立. ∵扇形OEF的面积仍是圆面积的,四边形OGBH的面积仍是正方形的面积的, ∴S=; (3)作OP⊥AB,OQ⊥BC. 则∠OPG=∠OQH,OP=OQ, ∵∠POQ=∠MOH, ∴∠POG=∠QOH, ∵在△OPG与△OQH中, , ∴△OPG≌△OQH(ASA). 结合(2)中的结论即可证明.
复制答案
考点分析:
相关试题推荐
某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.
(1)符合题意的组建方案有几种?请你帮学校设计出来;
(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?
查看答案
将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,另一直角边的长为manfen5.com 满分网
manfen5.com 满分网manfen5.com 满分网
(1)四边形ABCD是平行四边形吗?说出你的结论和理由:______
(2)如图2,将Rt△BCD沿射线BD方向平移到Rt△B1C1D1的位置,四边形ABC1D1是平行四边形吗?说出你的结论和理由:______
(3)在Rt△BCD沿射线BD方向平移的过程中,当点B的移动距离为______
查看答案
如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度(manfen5.com 满分网≈1.732,结果保留一位小数).

manfen5.com 满分网 查看答案
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到______元购物券,至多可得到______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案
已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.
(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.