如图,抛物线与x轴交于A(x
1,0)、B(x
2,0)两点,且x
1<x
2,与y轴交于点C(0,-4),其中x
1,x
2是方程x
2-4x-12=0的两个根.
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形.
如图,已知正四边形ABCD的外接圆⊙O,⊙O的面积为S
1,正四边形ABCD的面积为S
2,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H.设由OE、OF、
及正四边形ABCD的边围成的图形(图中的阴影部分)的面积为S.①
(1)当OM经过点A时(如图①),则S、S
1、S
2之间的关系为:S=______(用含S
1、S
2的代数式表示);
(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.
查看答案
某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.
(1)符合题意的组建方案有几种?请你帮学校设计出来;
(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?
查看答案
将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,另一直角边的长为
.
(1)四边形ABCD是平行四边形吗?说出你的结论和理由:______.
(2)如图2,将Rt△BCD沿射线BD方向平移到Rt△B
1C
1D
1的位置,四边形ABC
1D
1是平行四边形吗?说出你的结论和理由:______.
(3)在Rt△BCD沿射线BD方向平移的过程中,当点B的移动距离为______
查看答案
如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度(
≈1.732,结果保留一位小数).
查看答案
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到______元购物券,至多可得到______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案