如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l
1上.OA边与直线l
1重合,然后将三角形纸片绕着顶点A按顺吋针方向旋转120°,此时点O运动到了点O
1处,点B运动到了点B
1处;小慧又将三角形纸片AO
1B
1,绕点B
1按顺吋针方向旋转 120°,此时点A运动到了点A
1处,点O
1运动到了点O
2处(即顶点O经过上述两次旋转到达O
2处).
小慧还发现:三角形纸片在上述两次旋转的过程中.顶点O运动所形成的图形是两段圆弧,即
和
,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l
1围成的图形面积等于扇形A00
1的面积、△AO
1B
1的面积和扇形B
1O
1O
2的面积之和.
小慧进行类比研究:如图②,她把边长为1的正方形纸片0ABC放在直线l
2上,0A边与直线l
2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O
1处(即点B处),点C运动到了点C
1处,点B运动到了点B
2处,小慧又将正方形纸片 AO
1C
1B
1绕顶点B
1按顺时针方向旋转90°,….按上述方法经过若干次旋转后,她提出了如下问题:
问题①:若正方形纸片0ABC按上述方法经过3次旋转,求顶点0经过的路程,并求顶点O在此运动过程中所形成的图形与直线l
2围成图形的面积;若正方形纸片OABC按上述方法经过5次旋转.求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点0经过的路程是
?
考点分析:
相关试题推荐
如图,P为正比例函数y=
x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).
(1)求⊙P与直线x=2相切时点P的坐标.
(2)请直接写出⊙P与直线x=2相交、相离时x的取值范围.
查看答案
将背面相同,正面分别标有1,2,3,4的四张卡片洗匀后,背面朝上放在桌子上.
(1)从中随机抽取两张卡片,求卡片正面上的数字之和大于4的概率;
(2)若先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,求组成两位数恰好是3的倍数的概率(请用树状图或列表法加以说明).
查看答案
如图所示,已知AB为⊙O的直径,C、D是直径AB同侧圆周上两点,且弧CD=弧BD,过D作DE⊥AC于点E,求证:DE是⊙O的切线.
查看答案
如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m
2,求道路的宽.
(部分参考数据:32
2=1024,52
2=2704,48
2=2304)
查看答案
初三(04)班在一次答题活动中,签筒中有4根形状,大小相同的纸签,签里头分别写上了一个方程:
①x
2-x=0;②(x-1)
2-(2x-5)
2=0;③x
2+12x+36=0;④x
2-3x-1=0.
(1)四个方程中有两个相等的实数根的方程是______(填番号即可),并解有两个相等的实数根方程;
(2)小明首先抽签,他看不到纸签上的方程的情况下,从签中随机地抽取一根纸签,那么他抽到两根均为正整数的方程的概率是______.
查看答案