满分5 > 初中数学试题 >

如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O 上一点,且PA=...

如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O 上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.
(1)求证:PB是⊙O的切线;
(2)求证:AQ•PQ=OQ•BQ;
(3)设∠AOQ=α,若manfen5.com 满分网,OQ=15,求AB的长.

manfen5.com 满分网
(1)连接OP,与AB交于点C.欲证明PB是⊙O的切线,只需证明∠OBP=90°即可; (2)根据相似三角形的判定定理AA证明△QAO∽△QBP,然后由相似三角形的对应边成比例求得=,即AQ•PQ=OQ•BQ; (3)在Rt△OAQ中根据勾股定理和三角函数的余弦值的定义解得QB=27,利用(1)的结论求得PQ=45,即PA=36,又由勾股定理知OP=12;然后由切线的性质求AB的长. (1)证明:连接OP,与AB交于点C. ∵PA=PB,OA=OB,OP=OP, ∴△OAP≌△OBP(SSS), ∴∠OBP=∠OAP, ∵PA是⊙O的切线,A是切点, ∴∠OAP=90°, ∴∠OBP=90°,即PB是⊙O的切线; (2)证明:∵∠Q=∠Q,∠OAQ=∠QBP=90°, ∴△QAO∽△QBP, ∴=,即AQ•PQ=OQ•BQ; (3)连OP并交AB于点C, 在Rt△OAQ中,∵OQ=15,cosα=, ∴OA=12,AQ=9, ∴QB=27; ∵=, ∴PQ=45,即PA=36, ∴OP=12; ∵∠APO=∠APO,∠PAO=∠PCA=90° ∴△PAC∽△POA, ∴=, ∴PA•OA=OP•AC,即36×12=12•AC, ∴AC=,故AB=.
复制答案
考点分析:
相关试题推荐
如图,一次函数y=k1x+b的图象经过A(0,-2),B(1,0)两点,与反比例函数manfen5.com 满分网的图象在第一象限内的交点为M,若△OBM的面积为2.
(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
学校有一块长14米,宽10米的矩形空地,准备将其规划,设计图案如图,阴影应为绿化区(四块绿化区为全等的矩形),空白区为路面,且四周出口一样宽广且宽度不小于2米,不大于5米,路面造价为每平方米200元,绿化区为每平方manfen5.com 满分网米150元,设绿化区的长边长为x米.
(1)用x表示绿化区短边的长为______米,x的取值范围为______
(2)学校计划投资25000元用于此项工程建设,问能否按要求完成此项工程任务?若能,求绿化区的长边长.
查看答案
manfen5.com 满分网汶川地震后,某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3米,探测线与地面的夹角分别是30°和
60°(如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据:manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73)
查看答案
manfen5.com 满分网如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CF、AC.
(1)求证:四边形ABFC是平行四边形;
(2)如果DE2=BE•CE,求证:四边形ABFC是矩形.
查看答案
中央电视台举办的第14届“蓝色经典•天之蓝”杯青年歌手大奖赛,由部队文工团的A(海政)、B(空政)、C(武警)组成种子队,由部队文工团的D(解放军)和地方文工团的E(云南)、F(新疆)组成非种子队.现从种子队A、B、C与非种子队D、E、F中各抽取一个队进行首场比赛.
(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A、B、C、D、E、F表示);
(2)求首场比赛出场的两个队都是部队文工团的概率P?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.