满分5 > 初中数学试题 >

如图,抛物线y=x2+bx+c的顶点为D(-1,-4),与y轴交于点C(0,-3...

如图,抛物线y=x2+bx+c的顶点为D(-1,-4),与y轴交于点C(0,-3),与x轴交于A,B两点(点A在点B的左侧).
(1)求抛物线的解析式;
(2)连接AC,CD,AD,试证明△ACD为直角三角形;
(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)由定点列式计算,从而得到b,c的值而得解析式; (2)由解析式求解得到点A,得到AC,CD,AD的长度,而求证; (3)由(2)得到的结论,进行代入,要使以A,B,E,F为顶点的四边形是平行四边形,必须满足的条件是AB平行且等于EF,那么只需将E点的坐标向左或向右平移AB长个单位即可得出F点的坐标,然后将得出的F点坐标代入抛物线的解析式中,即可判断出是否存在符合条件的F点. 【解析】 (1)由题意得, 解得:b=2,c=-3, 则解析式为:y=x2+2x-3; (2)由题意结合图形 则解析式为:y=x2+2x-3, 解得x=1或x=-3, 由题意点A(-3,0), ∴AC=,CD=,AD=, 由AC2+CD2=AD2, 所以△ACD为直角三角形; (3)∵A(-3,0),B(1,0), ∴AB=4, ∵点E在抛物线的对称轴上, ∴点E的横坐标为-1, 当AB为平行四边形的一边时,EF=AB=4, ∴F的横坐标为3或-5, 把x=3或-5分别代入y=x2+2x-3,得到F的坐标为(3,12)或(-5,12); 当AB为平行四边形的对角线时,由平行四边形的对角线互相平分, ∴F点必在对称轴上,即F点与D点重合, ∴F(-1,-4). ∴所有满足条件的点F的坐标为(3,12),(-5,12),(-1,-4).
复制答案
考点分析:
相关试题推荐
如图,AB是半圆O的直径,点C是⊙O上一点(不与A,B重合),连接AC,BC,过点O作OD∥AC交BC于点D,在OD的延长线上取一点E,连接EB,使∠OEB=∠ABC.
(1)求证:BE是⊙O的切线;
(2)若OA=10,BC=16,求BE的长.

manfen5.com 满分网 查看答案
如图所示,某地区对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=-x+70,y2=2x-38,需求量为0时,即停止供应.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量.
(1)求该药品的稳定价格与稳定需求量.
(2)价格在什么范围内,该药品的需求量低于供应量?
(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量?

manfen5.com 满分网 查看答案
如图,已知点E,C在线段BF上,BE=CF,请在下列四个等式中,
①AB=DE,②∠ACB=∠F,③∠A=∠D,④AC=DF.选出两个作为条件,推出△ABC≌△DEF.并予以证明.(写出一种即可)
已知:____________
求证:△ABC≌△DEF.

manfen5.com 满分网 查看答案
如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲乙两人同时分别转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).记S=x+y
(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;
(2)在(1)的基础上,求点P落在反比例函数manfen5.com 满分网图象上的概率.
(3)李刚为甲乙两人设计了一个游戏:当S<6时甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?

manfen5.com 满分网 查看答案
为了解某县2011年初中毕业生的实验考查成绩等级的分布情况,随机抽取了该县若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:
成绩等级ABCD
人数60xy10
百分比30%50%15%m
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有______名;
(2)表中x,y和m所表示的数分别为:x=______,y=______,m=______
(3)请补全条形统计图;
(4)根据抽样调查结果,请你估计2011年该县5400名初中毕业生实验考查成绩为D类的学生人数.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.