连接BP,作EF⊥BC于点F,由正方形的性质可知△BEF为等腰直角三角形,BE=1,可求EF,利用面积法得S△BPE+S△BPC=S△BEC,将面积公式代入即可.
【解析】
连接BP,作EF⊥BC于点F,则∠EFB=90°,
由正方形的性质可知∠EBF=45°,
∴△BEF为等腰直角三角形,
又根据正方形的边长为1,得到BE=BC=1,
在直角三角形BEF中,sin∠EBF=,
即BF=EF=BEsin45°=1×=,
又PM⊥BD,PN⊥BC,
∴S△BPE+S△BPC=S△BEC,
即BE×PM+×BC×PN=BC×EF,
∵BE=BC,
PM+PN=EF=;
故答案为:.