满分5 > 初中数学试题 >

如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点...

如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连接CF.
(1)当∠AOB=30°时,求弧AB的长度;
(2)当DE=8时,求线段EF的长;
(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似?若存在,请求出此时点E的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)连接BC,由已知得∠ACB=2∠AOB=60°,AC=AO=5,根据弧长公式求解; (2)连接OD,由垂直平分线的性质得OD=OA=10,又DE=8,在Rt△ODE中,由勾股定理求OE,依题意证明△OEF∽△DEA,利用相似比求EF; (3)存在.当以点E、C、F为顶点的三角形与△AOB相似时,分为①当交点E在O,C之间时,由以点E、C、F为顶点的三角形与△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB,②当交点E在点C的右侧时,要使△ECF与△BAO相似,只能使∠ECF=∠BAO,③当交点E在点O的左侧时,要使△ECF与△BAO相似,只能使∠ECF=∠BAO,三种情况,分别求E点坐标. 【解析】 (1)连接BC, ∵A(10,0),∴OA=10,CA=5, ∵∠AOB=30°, ∴∠ACB=2∠AOB=60°, ∴弧AB的长=;(4分) (2)①若D在第一象限, 连接OD, ∵OA是⊙C直径, ∴∠OBA=90°, 又∵AB=BD, ∴OB是AD的垂直平分线, ∴OD=OA=10, 在Rt△ODE中, OE==, ∴AE=AO-OE=10-6=4, 由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA, 得△OEF∽△DEA, ∴,即, ∴EF=3;(4分) ②若D在第二象限, 连接OD, ∵OA是⊙C直径, ∴∠OBA=90°, 又∵AB=BD, ∴OB是AD的垂直平分线, ∴OD=OA=10, 在Rt△ODE中, OE==, ∴AE=AO+OE=10+6=16, 由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA, 得△OEF∽△DEA, ∴,即=, ∴EF=12; ∴EF=3或12; (3)设OE=x, ①当交点E在O,C之间时,由以点E、C、F为顶点的三角 形与△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB, 当∠ECF=∠BOA时,此时△OCF为等腰三角形,点E为OC 中点,即OE=, ∴E1(,0); 当∠ECF=∠OAB时,有CE=5-x,AE=10-x, ∴CF∥AB,有CF=, ∵△ECF∽△EAD, ∴,即,解得:, ∴E2(,0); ②当交点E在点C的右侧时, ∵∠ECF>∠BOA, ∴要使△ECF与△BAO相似,只能使∠ECF=∠BAO, 连接BE, ∵BE为Rt△ADE斜边上的中线, ∴BE=AB=BD, ∴∠BEA=∠BAO, ∴∠BEA=∠ECF, ∴CF∥BE, ∴, ∵∠ECF=∠BAO,∠FEC=∠DEA=90°, ∴△CEF∽△AED, ∴, 而AD=2BE, ∴, 即,解得,<0(舍去), ∴E3(,0); ③当交点E在点O的左侧时, ∵∠BOA=∠EOF>∠ECF. ∴要使△ECF与△BAO相似,只能使∠ECF=∠BAO 连接BE,得BE==AB,∠BEA=∠BAO ∴∠ECF=∠BEA, ∴CF∥BE, ∴, 又∵∠ECF=∠BAO,∠FEC=∠DEA=90°, ∴△CEF∽△AED, ∴, 而AD=2BE, ∴, ∴, 解得x1=,x2=, ∵点E在x轴负半轴上, ∴E4(,0), 综上所述:存在以点E、C、F为顶点的三角形与△AOB相似, 此时点E坐标为:E1(,0)、E2(,0)、E3(,0)、E4(,0).(4分)
复制答案
考点分析:
相关试题推荐
如图,已知抛物线的顶点坐标为M(1,4),与x轴交于A、B两点(点A在点B左侧),与ymanfen5.com 满分网轴交于点C(0,3).
(1)求抛物线的解析式;
(2)求tan∠ACO与sin∠BCO的乘积;
(3)在线段BC边上是否存在点P,使得以B、O、P为顶点的三角形与△BAC相似?若存在,求出点P的坐标;若不存在,请说明理由.
(4)在对称轴上是否存在一点P,使|PC-PB|的值最大,请求出点P的坐标.
查看答案
恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
查看答案
如图,在等腰△ABC中,点D、E分别是两腰AC、BC上的点,连接AE、BD相交于点O,∠1=∠2.
(1)求证:OD=OE;
(2)求证:四边形ABED是等腰梯形;
(3)若AB=3DE,△DCE的面积为2,求四边形ABED的面积.

manfen5.com 满分网 查看答案
某市在今年六月份举行了“第四届欢乐今夏购物节”活动.各大商场都推出了优质服务月活动.星河商场为了解本商场的服务质量,在某日随机调查了来本商场的部分顾客,其中“A”表示“很满意”;“B”表示“满意”;“C”表示“比较满意”;“D”表示“不满意”.图 (1)和图 (2)是调查人员通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
manfen5.com 满分网
(1)求本次共调查了多少位顾客?
(2)在图(1)中,将表示“满意”的部分补充完整.
(3)在扇形统计图中,计算出“D”(即“不满意”)部分所对应的圆心角的度数.
(4)如果以日平均客流量为2000人计算,请你估算六月份对商场服务质量感到“很满意”的顾客人数.
查看答案
先化简:manfen5.com 满分网,其中x=manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.