满分5 > 初中数学试题 >

如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F...

如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.
(1)求证:CF=BF;
(2)若AD=2,⊙O的半径为3,求BC的长.

manfen5.com 满分网
连接AC,根据已知条件利用等角对等边可以得到CF=BF;作CG⊥AD于点G,先利用HL判定Rt△BCE≌Rt△DCG,推出BE=DG,根据边之间的关系可求得BE的值,再根据相似三角形的判定得到△BCE∽△BAC,根据相似三角形的对应边成比例,可得到BC2=BE•AB,这样便求得BC的值,注意负值要舍去. (1)证明:连接AC,如图 ∵C是弧BD的中点 ∴∠BDC=∠DBC(1分) 又∵∠BDC=∠BAC 在△ABC中,∠ACB=90°,CE⊥AB ∴∠BCE=∠BAC ∠BCE=∠DBC(3分) ∴CF=BF;(4分) (2)【解析】 解法一:作CG⊥AD于点G, ∵C是弧BD的中点 ∴∠CAG=∠BAC, 即AC是∠BAD的角平分线.(5分) ∴CE=CG,AE=AG(6分) 在Rt△BCE与Rt△DCG中, CE=CG,CB=CD ∴Rt△BCE≌Rt△DCG(HL) ∴BE=DG(7分) ∴AE=AB-BE=AG=AD+DG 即6-BE=2+DG ∴2BE=4,即BE=2(8分) 又∵△BCE∽△BAC ∴BC2=BE•AB=12(9分) BC=±2(舍去负值) ∴BC=2.(10分) 解法二:∵AB是⊙O的直径,CE⊥AB ∴∠BEF=∠ADB=90°,(5分 在Rt△ADB与Rt△FEB中, ∵∠ABD=∠FBE ∴△ADB∽△FEB, 则,即, ∴BF=3EF(6分) 又∵BF=CF, ∴CF=3EF 利用勾股定理得: (7分) 又∵△EBC∽△ECA 则, 则CE2=AE•BE(8分) ∴(CF+EF)2=(6-BE)•BE 即(3EF+EF)2=(6-2EF)•2EF ∴EF=(9分) ∴BC=.(10分)
复制答案
考点分析:
相关试题推荐
在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息,解答下列问题:
(1)这辆汽车的往、返速度是否相同?请说明理由;
(2)求返程中y与x之间的函数表达式;
(3)求这辆汽车从甲地出发4h时与甲地的距离.

manfen5.com 满分网 查看答案
如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.
(1)求证:DA⊥AE;
(2)试判断AB与DE是否相等?并证明你的结论.

manfen5.com 满分网 查看答案
小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.
(1)用树状图或列表法求出小明先挑选的概率;
(2)你认为这个游戏公平吗?请说明理由.
查看答案
某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):
请根据图中提供的信息,完成下列问题:
(1)在这次问卷调查中,一共抽查了______名学生;
(2)请将上面两幅统计图补充完整;
(3)图①中,“踢毽”部分所对应的圆心角为______度;
(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?
manfen5.com 满分网
查看答案
先化简,再对a取一个你喜欢的数,代入求值manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.