满分5 > 初中数学试题 >

如图,直线y=-x+4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过点A...

如图,直线y=-manfen5.com 满分网x+4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过点A、C和点B(-1,0).
(1)求该二次函数的关系式;
(2)设该二次函数的图象的顶点为M,求四边形AOCM的面积;
(3)有两动点D、E同时从点O出发,其中点D以每秒manfen5.com 满分网个单位长度的速度沿折线OAC按O⇒A⇒C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O⇒C⇒A的路线运动,当D、E两点相遇时,它们都停止运动.设D、E同时从点O出发t秒时,△ODE的面积为S.
①请问D、E两点在运动过程中,是否存在DE∥OC,若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S是②中函数S的最大值,那么S=______

manfen5.com 满分网
(1)先根据直线AC的解析式求出A、C两点的坐标,然后根据A、B、C三点的坐标用待定系数法即可求出抛物线的解析式. (2)根据抛物线的解析式可求出M点的坐标,由于四边形OAMC不是规则的四边形,因此可过M作x轴的垂线,将四边形OAMC分成一个直角三角形和一个直角梯形来求解. (3)①如果DE∥OC,此时点D,E应分别在线段OA,CA上,先求出这个区间t的取值范围,然后根据平行线分线段成比例定理,求出此时t的值,然后看t的值是否符合此种情况下t的取值范围.如果符合则这个t的值就是所求的值,如果不符合,那么就说明不存在这样的t. ②本题要分三种情况进行讨论: 当E在OC上,D在OA上,即当0<t≤1时,此时S=OE•OD,由此可得出关于S,t的函数关系式; 当E在CA上,D在OA上,即当1<t≤2时,此时S=OD×E点的纵坐标.由此可得出关于S,t的函数关系式; 当E,D都在CA上时,即当2<t<相遇时用的时间,此时S=S△AOE-S△AOD,由此可得出S,t的函数关系式; 综上所述,可得出不同的t的取值范围内,函数的不同表达式. ③根据②的函数即可得出S的最大值. 【解析】 (1)令y=0,则x=3, ∴A(3,0),C(0,4), ∵二次函数的图象过点C(0,4), ∴可设二次函数的关系式为y=ax2+bx+4. 又∵该函数图象过点A(3,0),B(-1,0), ∴, 解得a=-,b=. ∴所求二次函数的关系式为y=-x2+x+4. (2)∵y=-x2+x+4 =-(x-1)2+ ∴顶点M的坐标为(1,) 过点M作MF⊥x轴于F ∴S四边形AOCM=S△AFM+S梯形FOCM =×(3-1)×+×(4+)×1 =10 ∴四边形AOCM的面积为10. (3)①不存在DE∥OC ∵若DE∥OC,则点D,E应分别在线段OA,CA上,此时1<t<2,在Rt△AOC中,AC=5. 设点E的坐标为(x1,y1) ∴=, ∴ ∵DE∥OC, ∴ ∴ ∵t=>2,不满足1<t<2. ∴不存在DE∥OC. ②根据题意得D,E两点相遇的时间为(秒) 现分情况讨论如下: (ⅰ)当0<t≤1时,S=×t•4t=3t2; (ⅱ)当1<t≤2时,设点E的坐标为(x2,y2) ∴, ∴ ∴S=×t×=-t2+t; (ⅲ)当2<t<时, 设点E的坐标为(x3,y3),类似ⅱ可得 设点D的坐标为(x4,y4) ∴, ∴ ∴S=S△AOE-S△AOD =×3×-×3× =-t+. ③当0<t≤1时,S=×t•4t=3t2,函数的最大值是3; 当1<t≤2时,S=-t2+t.函数的最大值是:, 当2<t<时,S=-t+,0<S<. ∴S=.
复制答案
考点分析:
相关试题推荐
扬州市某服装厂A车间接到生产一批西服的紧急任务,要求必须在12天(含12天)内完成.已知每套西服的成本价为800元,该车间平时每天能生产西服20套.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22套,以后每天生产的西服都比前一天多2套.但是由于机器损耗等原因,当每天生产的西服数达到30套后,每增加1套西服,当天生产的所有西服平均每套的成本就增加20元.设该车间第x天生产的西服数为y套.
(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若这批西服的订购价格为每套1200元,设该车间每天的利润为W元,试求出W与x之间的函数关系式,并求出该车间获得最高利润的那一天的利润是多少元?
查看答案
如图,已知AB是⊙O的直径,AC为弦,且平分∠BAD,AD⊥CD,垂足为D.
(1)求证:CD是⊙O切线;
(2)若⊙O的直径为4,AD=3,求∠BAC的度数.

manfen5.com 满分网 查看答案
如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,该山坡的坡度为manfen5.com 满分网,且O,A,B在同一条直线上.
求:(1)电视塔OC的高度;
(2)此人所在位置点P的铅直高度;
(3)点P到电视塔所在直线OC的距离.(测倾器的高度忽略不计,结果保留根号形式)

manfen5.com 满分网 查看答案
如图,DB∥AC,且DB=manfen5.com 满分网AC,E是AC的中点,
(1)求证:BC=DE;
(2)连接AD、BE,探究:当△ABC满足什么条件时,四边形DBEA是矩形?并说明理由.

manfen5.com 满分网 查看答案
为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36度.根据上面提供的信息,回答下列问题:
(1)写出样本容量,m的值及抽取部分学生体育成绩的中位数;
(2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.
体育成绩(分)人数(人)百分比(%)
26816
2724
2815
29m
30


manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.