满分5 > 初中数学试题 >

一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直...

一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.
manfen5.com 满分网
(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为______,周长为______
(1)由等腰直角三角形的性质:底边上的中线与底边上的高重合,得到△AMC是等腰直角三角形,AM=MC=AC=a,则重叠部分的面积是△ACB的面积的一半,为a2,周长为(1+)a. (2)易得重叠部分是正方形,边长为a,面积为a2,周长为2a. (3)过点M分别作AC、BC的垂线MH、MG,垂足为H、G.求得Rt△MHE≌Rt△MGF,则阴影部分的面积等于正方形CGMH的面积. 【解析】 (1)∵AM=MC=AC=a,则 ∴重叠部分的面积是△ACB的面积的一半为a2,周长为(1+)a. (2)∵叠部分是正方形 ∴边长为a,面积为a2,周长为2a. (3)猜想:重叠部分的面积为. 理由如下: 过点M分别作AC、BC的垂线MH、MG,垂足为H、G 设MN与AC的交点为E,MK与BC的交点为F ∵M是△ABC斜边AB的中点,AC=BC=a ∴MH=MG= 又∵∠HME+∠HMF=∠GMF+∠HMF, ∴∠HME=∠GMF, ∴Rt△MHE≌Rt△MGF ∴阴影部分的面积等于正方形CGMH的面积 ∵正方形CGMH的面积是MG•MH=×= ∴阴影部分的面积是.
复制答案
考点分析:
相关试题推荐
2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.
(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?
(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?
比赛项目票价(元/场)
男篮1000
足球800
乒乓球500

查看答案
亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.你能根据以上测量数据帮助他们求出住宅楼的高度吗?

manfen5.com 满分网 查看答案
甲、乙两人骑自行车前往A地,他们距A地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)甲、乙两人的速度各是多少?
(2)求出甲距A地的路程s与行驶时间t之间的函数关系式.
(3)在什么时间段内乙比甲离A地更近?

manfen5.com 满分网 查看答案
自从北京获得2008年夏季奥运会申办权以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:
manfen5.com 满分网
(1)求该班共有多少名学生?
(2)在条形图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;
(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.
查看答案
manfen5.com 满分网如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.