满分5 > 初中数学试题 >

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C. (1)求...

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.

manfen5.com 满分网
(1)抛物线与x轴的交点,即当y=0,C点坐标即当x=0,分别令y以及x为0求出A,B,C坐标的值; (2)四边形ACBP的面积=△ABC+△ABP,由A,B,C三点的坐标,可知△ABC是直角三角形,且AC=BC,则可求出△ABC的面积,根据已知可求出P点坐标,可知AP的长度,以及点B到直线的距离,从而求出△ABP的面积,则就求出四边形ACBP的面积; (3)假设存在这样的点M,两个三角形相似,根据题意以及上两题可知,∠PAC∠和∠MGA是直角,只需证明或即可.设M点坐标,根据题中所给条件可求出线段AG,CA,MG,CA的长度,然后列等式,分情况讨论,求解. 【解析】 (1)令y=0, 得x2-1=0 解得x=±1, 令x=0,得y=-1 ∴A(-1,0),B(1,0),C(0,-1);(2分) (2)∵OA=OB=OC=1, ∴∠BAC=∠ACO=∠BCO=45°. ∵AP∥CB, ∴∠PAB=45°. 过点P作PE⊥x轴于E,则△APE为等腰直角三角形, 令OE=a,则PE=a+1, ∴P(a,a+1). ∵点P在抛物线y=x2-1上, ∴a+1=a2-1. 解得a1=2,a2=-1(不合题意,舍去). ∴PE=3(4分). ∴四边形ACBP的面积S=AB•OC+AB•PE =×2×1+×2×3=4;(6分) (3)假设存在 ∵∠PAB=∠BAC=45°, ∴PA⊥AC ∵MG⊥x轴于点G, ∴∠MGA=∠PAC=90° 在Rt△AOC中,OA=OC=1, ∴AC= 在Rt△PAE中,AE=PE=3, ∴AP=3(7分) 设M点的横坐标为m,则M(m,m2-1) ①点M在y轴左侧时,则m<-1. (ⅰ)当△AMG∽△PCA时,有. ∵AG=-m-1,MG=m2-1. 即 解得m1=-1(舍去)m2=(舍去). (ⅱ)当△MAG∽△PCA时有, 即. 解得:m=-1(舍去)m2=-2. ∴M(-2,3)(10分). ②点M在y轴右侧时,则m>1 (ⅰ)当△AMG∽△PCA时有 ∵AG=m+1,MG=m2-1 ∴ 解得m1=-1(舍去)m2=. ∴M(,). (ⅱ)当△MAG∽△PCA时有, 即. 解得:m1=-1(舍去)m2=4, ∴M(4,15). ∴存在点M,使以A、M、G三点为顶点的三角形与△PCA相似 M点的坐标为(-2,3),(,),(4,15).(13分)
复制答案
考点分析:
相关试题推荐
一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.
manfen5.com 满分网
(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为______,周长为______
查看答案
2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.
(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?
(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?
比赛项目票价(元/场)
男篮1000
足球800
乒乓球500

查看答案
亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.你能根据以上测量数据帮助他们求出住宅楼的高度吗?

manfen5.com 满分网 查看答案
甲、乙两人骑自行车前往A地,他们距A地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)甲、乙两人的速度各是多少?
(2)求出甲距A地的路程s与行驶时间t之间的函数关系式.
(3)在什么时间段内乙比甲离A地更近?

manfen5.com 满分网 查看答案
自从北京获得2008年夏季奥运会申办权以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:
manfen5.com 满分网
(1)求该班共有多少名学生?
(2)在条形图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;
(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.