满分5 > 初中数学试题 >

(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是B...

(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=______时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
manfen5.com 满分网
(1)要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN. (2)同(1),要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN. (3)由(1)(2)可知,∠AMN等于它所在的正多边形的一个内角即等于时,结论AM=MN仍然成立. (1)证明:在边AB上截取AE=MC,连接ME. ∵正方形ABCD中,∠B=∠BCD=90°,AB=BC. ∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE, BE=AB-AE=BC-MC=BM, ∴∠BEM=45°,∴∠AEM=135°. ∵N是∠DCP的平分线上一点, ∴∠NCP=45°,∴∠MCN=135°. 在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN, ∴△AEM≌△MCN(ASA), ∴AM=MN. (2)【解析】 结论AM=MN还成立 证明:在边AB上截取AE=MC,连接ME. 在正△ABC中,∠B=∠BCA=60°,AB=BC. ∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAE, BE=AB-AE=BC-MC=BM, ∴∠BEM=60°,∴∠AEM=120°. ∵N是∠ACP的平分线上一点, ∴∠ACN=60°,∴∠MCN=120°. 在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN, ∴△AEM≌△MCN(ASA), ∴AM=MN. (3)【解析】 若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,则当∠AMN=时,结论AM=MN仍然成立.
复制答案
考点分析:
相关试题推荐
(1)计算:(π-2011)+(sin60°)-1-|tan30°-manfen5.com 满分网|+manfen5.com 满分网
(2)先化简manfen5.com 满分网,然后选取一个你认为符合题意的x的值代入求值.
查看答案
将1、manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网按下列方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,7)表示的两数之积是   
                    1                            第一排
               manfen5.com 满分网    manfen5.com 满分网                        第二排
          manfen5.com 满分网       1      manfen5.com 满分网                   第三排
      manfen5.com 满分网      manfen5.com 满分网     1        manfen5.com 满分网              第四排
   manfen5.com 满分网     manfen5.com 满分网      1      manfen5.com 满分网      manfen5.com 满分网          第五排
查看答案
如果分式manfen5.com 满分网的值为0,则x的值应为    查看答案
若m=manfen5.com 满分网,则m5-2m4-2011m3的值是    查看答案
分解因式:x2y-2xy+y=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.