满分5 > 初中数学试题 >

如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过...

如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.
(1)求证:PC是⊙O的切线;
(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点;
(3)在满足(2)的条件下,AB=10,ED=4manfen5.com 满分网,求BG的长.

manfen5.com 满分网
(1)连OC,由ED⊥AB得到∠FBG+∠FGB=90°,又PC=PD,则∠1=∠2,而∠2=∠FGB,∠4=∠FBG,即可得到∠1+∠4=90°,根据切线的判定定理即可得到结论; (2)连OG,由BG2=BF•BO,即BG:BO=BF:BG,根据三角形相似的判定定理得到△BGO∽△BFG,由其性质得到∠OGB=∠BFG=90°,然后根据垂径定理即可得到点G是BC的中点; (3)连OE,由ED⊥AB,根据垂径定理得到FE=FD,而AB=10,ED=4,得到EF=2,OE=5,在Rt△OEF中利用勾股定理可计算出OF,从而得到BF,然后根据BG2=BF•BO即可求出BG. (1)证明:连OC,如图, ∵ED⊥AB, ∴∠FBG+∠FGB=90°, 又∵PC=PG, ∴∠1=∠2, 而∠2=∠FGB,∠4=∠FBG, ∴∠1+∠4=90°,即OC⊥PC, ∴PC是⊙O的切线; (2)证明:连OG,如图, ∵BG2=BF•BO,即BG:BO=BF:BG, 而∠FBG=∠GBO, ∴△BGO∽△BFG, ∴∠OGB=∠BFG=90°, 即OG⊥BG, ∴BG=CG,即点G是BC的中点; (3)【解析】 连OE,如图, ∵ED⊥AB, ∴FE=FD, 而AB=10,ED=4, ∴EF=2,OE=5, 在Rt△OEF中,OF===1, ∴BF=5-1=4, ∵BG2=BF•BO, ∴BG2=BF•BO=4×5, ∴BG=2.
复制答案
考点分析:
相关试题推荐
随着城市化进程的发展,农村留守儿童问题已引起全社会的广泛关注,为了了解某农村初中800名学生监护人的情况,我们从中抽取一部分学生作为样本进行数据处理,得到如下的分布表和条形统计图:
监护人频数频率
祖辈照顾______0.30
亲朋好友130.13
母亲一人在家34______
父亲一人在家____________
父母都在家130.13
合计____________
(1)根据上述数据,补全统计表和条形统计图;
(2)若全市共有40000名农村初中学生,试估计该市初中生的监护人不是自己父亲或母亲的共有多少名?

manfen5.com 满分网 查看答案
如图,已知线段a、b,求作:Rt△ABC,使∠ACB=90°,BC=a,AC=b(不写作法,保留作图痕迹).

manfen5.com 满分网 查看答案
已知在等边三角形ABC中,D、E分别为AB、AC上的点,且BD=AE,EB与CD相交于点O,EF⊥CD于点F.求证:OE=2OF.

manfen5.com 满分网 查看答案
解不等式组 manfen5.com 满分网,并将其解集在数轴上表示出来.
查看答案
计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.