满分5 > 初中数学试题 >

如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交...

如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.
(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=4,DE=3,求AD的长.

manfen5.com 满分网
(1)连接OF,通过切线的性质证OF⊥FH,进而由FH∥BC,得OF⊥BC,即可由垂径定理得到F是弧BC的中点,根据圆周角定理可得∠BAF=∠CAF,由此得证; (2)求BF=FD,可证两边的对角相等;易知∠DBF=∠DBC+∠FBC,∠BDF=∠BAD+∠ABD;观察上述两个式子,∠ABD、∠CBD是被角平分线平分∠ABC所得的两个等角,而∠CBF和∠DAB所对的是等弧,由此可证得∠DBF=∠BDF,即可得证; (3)由EF、DE的长可得出DF的长,进而可由(2)的结论得到BF的长;然后证△FBE∽△FAB,根据相似三角形得到的成比例线段,可求出AF的长,即可由AD=AF-DF求出AD的长. (1)证明:连接OF ∵FH是⊙O的切线 ∴OF⊥FH(1分) ∵FH∥BC, ∴OF垂直平分BC(2分) ∴ ∴AF平分∠BAC(3分) (2)证明:由(1)及题设条件可知 ∠1=∠2,∠4=∠3,∠5=∠2(4分) ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3(5分) ∵∠1+∠4=∠BDF,∠5+∠3=∠FBD, ∴∠BDF=∠FBD, ∴BF=FD(6分) (3)【解析】 在△BFE和△AFB中 ∵∠5=∠2=∠1,∠AFB=∠AFB, ∴△BFE∽△AFB(7分) ∴═,(8分) ∴BF2=FE•FA ∴(9分),EF=4,BF=FD=EF+DE=4+3=7, ∴ ∴AD=AF-DF=AF-(DE+EF)==(10分)
复制答案
考点分析:
相关试题推荐
在日常生活中,我们经常有目的地收集数据,分析数据,作出预测.
(1)下图是小芳家2009年全年月用电量的条形统计图.
manfen5.com 满分网
根据图中提供的信息,回答下列问题:
①2009年小芳家月用电量最小的是______月,四个季度中用电量最大的是第______季度;
②求2009年5月至6月用电量的月增长率;
(2)今年小芳家添置了新电器.已知今年5月份的用电量是120千瓦时,根据2009年5月至7月用电量的增长趋势,预计今年7月份的用电量将达到240千瓦时.假设今年5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,预计小芳家今年6月份的用电量是多少千瓦时?
查看答案
如图,直角△ABC中,∠C=90°,manfen5.com 满分网manfen5.com 满分网,点P为边BC上一动点,PD∥AB,PD交AC于点D,连接AP.
(1)求AC、BC的长;
(2)设PC的长为x,△ADP的面积为y.当x为何值时,y最大,并求出最大值.

manfen5.com 满分网 查看答案
在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距manfen5.com 满分网km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.

manfen5.com 满分网 查看答案
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
查看答案
如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).
(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果;
(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.