在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、E(3,
)三点.
(1)求此抛物线的解析式;
(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l,且l与x轴的夹角为30°?若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号).
考点分析:
相关试题推荐
如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.
(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=4,DE=3,求AD的长.
查看答案
在日常生活中,我们经常有目的地收集数据,分析数据,作出预测.
(1)下图是小芳家2009年全年月用电量的条形统计图.
根据图中提供的信息,回答下列问题:
①2009年小芳家月用电量最小的是______月,四个季度中用电量最大的是第______季度;
②求2009年5月至6月用电量的月增长率;
(2)今年小芳家添置了新电器.已知今年5月份的用电量是120千瓦时,根据2009年5月至7月用电量的增长趋势,预计今年7月份的用电量将达到240千瓦时.假设今年5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,预计小芳家今年6月份的用电量是多少千瓦时?
查看答案
如图,直角△ABC中,∠C=90°,
,
,点P为边BC上一动点,PD∥AB,PD交AC于点D,连接AP.
(1)求AC、BC的长;
(2)设PC的长为x,△ADP的面积为y.当x为何值时,y最大,并求出最大值.
查看答案
在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距
km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.
查看答案
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
查看答案