满分5 > 初中数学试题 >

如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过...

如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.
(1)求证:PC是⊙O的切线;
(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点;
(3)在满足(2)的条件下,AB=10,ED=4manfen5.com 满分网,求BG的长.

manfen5.com 满分网
(1)连OC,由ED⊥AB得到∠FBG+∠FGB=90°,又PC=PD,则∠1=∠2,而∠2=∠FGB,∠4=∠FBG,即可得到∠1+∠4=90°,根据切线的判定定理即可得到结论; (2)连OG,由BG2=BF•BO,即BG:BO=BF:BG,根据三角形相似的判定定理得到△BGO∽△BFG,由其性质得到∠OGB=∠BFG=90°,然后根据垂径定理即可得到点G是BC的中点; (3)连OE,由ED⊥AB,根据垂径定理得到FE=FD,而AB=10,ED=4,得到EF=2,OE=5,在Rt△OEF中利用勾股定理可计算出OF,从而得到BF,然后根据BG2=BF•BO即可求出BG. (1)证明:连OC,如图, ∵ED⊥AB, ∴∠FBG+∠FGB=90°, 又∵PC=PG, ∴∠1=∠2, 而∠2=∠FGB,∠4=∠FBG, ∴∠1+∠4=90°,即OC⊥PC, ∴PC是⊙O的切线; (2)证明:连OG,如图, ∵BG2=BF•BO,即BG:BO=BF:BG, 而∠FBG=∠GBO, ∴△BGO∽△BFG, ∴∠OGB=∠BFG=90°, 即OG⊥BG, ∴BG=CG,即点G是BC的中点; (3)【解析】 连OE,如图, ∵ED⊥AB, ∴FE=FD, 而AB=10,ED=4, ∴EF=2,OE=5, 在Rt△OEF中,OF===1, ∴BF=5-1=4, ∵BG2=BF•BO, ∴BG2=BF•BO=4×5, ∴BG=2.
复制答案
考点分析:
相关试题推荐
已知关于x的方程x2-2(k-3)x+k2-4k-1=0.
(1)若这个方程有实数根,求k的取值范围;
(2)若这个方程有一个根为1,求k的值;
(3)若以方程x2-2(k-3)x+k2-4k-1=0的两个根为横坐标、纵坐标的点恰在反比例函数manfen5.com 满分网的图象上,求满足条件的m的最小值.
查看答案
某厂工人小宋某月工作部分信息如下.
信息一:工作时间:每天上午8:00-12:00,下午14:00-18:00,每月20天
信息二:生产甲、乙两种产品,并且按规定每月生产甲产品件数不少于60件.生产产品的件数与所用时间之间的关系如下表:
生产甲产品数(件)生产乙产品数(件)所用时间(分)
1010350
3020850
信息三:按件数计酬,每生产一件甲产品可得1.5元,每生产一件乙产品可得2.8元.
信息四:小宋工作时两种产品不能同时进行生产.
根据以上信息回答下列问题:
(1)小宋每生产一件甲种产品,每生产一件乙种产品分别需要多少时间?
(2)小宋该月最多能得多少元?此时生产的甲、乙两种产品分别是多少件?(习题改编)
查看答案
如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF(不再添加其它线段,不再标注或使用其他字母),并给出证明.
(1)你添加的条件是:______
(2)证明:

manfen5.com 满分网 查看答案
如图,一次函数y=kx+b的图象与反比例函数y=manfen5.com 满分网的图象交于A(-2,1),B(1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.

manfen5.com 满分网 查看答案
一方有难,八方支援.2010年4月14日青海玉树发生7.1级强烈地震,给玉树人民造成了巨大的损失.灾难发生后,实验中学举行了爱心捐款活动,全校同学纷纷拿出自己的零花钱,踊跃捐款支援灾区人民﹒小慧对捐款情况进行了抽样调查,抽取了40名同学的捐款数据,把数据进行分组、列频数分布表后,绘制了频数分布直方图.图中从左到右各长方形高度之比为3:4:5:7:1(如图).
(1)捐款20元这一组的频数是______
(2)40名同学捐款数据的中位数是______
(3)若该校捐款金额不少于34500元,请估算该校捐款同学的人数至少有多少名?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.