满分5 > 初中数学试题 >

如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点...

如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.
(1)求证:DF垂直平分AC;
(2)求证:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半径.

manfen5.com 满分网
(1)由DE是⊙O的切线,且DF过圆心O,可得DF⊥DE,又由AC∥DE,则DF⊥AC,进而可知DF垂直平分AC; (2)可先证△AGD≌△CGF,四边形ACED是平行四边形,即可证明FC=CE; (3)连接AO可先求得AG=4cm,在Rt△AGD中,由勾股定理得GD=3cm;设圆的半径为r,则AO=r,OG=r-3,在Rt△AOG中,由勾股定理可求得r=. (1)证明:∵DE是⊙O的切线,且DF过圆心O, ∴DF是⊙O的直径所在的直线, ∴DF⊥DE, 又∵AC∥DE, ∴DF⊥AC, ∴G为AC的中点,即DF平分AC,则DF垂直平分AC;(2分) (2)证明:由(1)知:AG=GC, 又∵AD∥BC, ∴∠DAG=∠FCG; 又∵∠AGD=∠CGF, ∴△AGD≌△CGF(ASA),(4分) ∴AD=FC; ∵AD∥BC且AC∥DE, ∴四边形ACED是平行四边形, ∴AD=CE, ∴FC=CE;(5分) (3)【解析】 连接AO, ∵AG=GC,AC=8cm, ∴AG=4cm; 在Rt△AGD中,由勾股定理得GD2=AD2-AG2=52-42=9, ∴GD=3;(6分) 设圆的半径为r,则AO=r,OG=r-3, 在Rt△AOG中,由勾股定理得AO2=OG2+AG2, 有:r2=(r-3)2+42, 解得r=,(8分) ∴⊙O的半径为cm.
复制答案
考点分析:
相关试题推荐
某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.
(1)求改进设备后平均每天耗煤多少吨?
(2)试将该题内容改编为与我们日常生活、学习有关的问题,使所列的方程相同或相似(不必求解).
查看答案
阳光明媚的一天,数学兴趣小组的同学去操场上测量旗杆的高度,他们带了以下测量工具:皮具、三角尺、标杆、小平面镜等.首先,小明说:“我们用皮尺和三角尺(含30°角)来测量”.于是大家一起动手,测得小明与旗杆的距离AC为15cm,小明的眼睛与地面的距离为1.6cm,如图所示.
manfen5.com 满分网manfen5.com 满分网
然后,小红和小强提出了自己的想法.
小红说:“我用皮尺和标杆能测出旗杆的高度.”
小强说:“我用皮尺和小平面镜也能测出旗杆的高度!”
根据以上情景,解答下列问题:
(1)利用下图,请你帮助小明求出旗杆AB的高度(结果保留整数.参考数据:sin30°=0.5,cos30°≈0.87,tan30°≈0.58,cot30°≈1.73);
(2)你认为小红和小强提出的方案可行吗?如果可行,请选择一种方案在下图中画出测量示意图,并简述测量步骤.
查看答案
如图,直线y=kx+b与反比例函数y=manfen5.com 满分网(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4.
(1)试确定反比例函数的关系式;
(2)求△AOC的面积.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=2BC,点D、点E分别为AB、AC的中点,连接DE,将△ADE绕点E旋转180°,得到△CFE.试判断四边形BCFD的形状,并说明理由.

manfen5.com 满分网 查看答案
在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:
该班学生参加各项服务的频数、频率统计表:
服务类别频数频率
文明宣传员40.08
文明劝导员10
义务小警卫80.16
环境小卫士0.32
小小活雷锋120.24
请根据上面的统计图表,解答下列问题:
(1)该班参加这次公益活动的学生共有______名;
(2)请补全频数、频率统计表和频数分布直方图;
(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.