满分5 > 初中数学试题 >

如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,...

manfen5.com 满分网如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值; (2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标; (3)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标. 【解析】 (1)将B、C两点的坐标代入得, 解得:; 所以二次函数的表达式为:y=x2-2x-3(3分) (2)存在点P,使四边形POP′C为菱形; 设P点坐标为(x,x2-2x-3),PP′交CO于E 若四边形POP′C是菱形,则有PC=PO; 连接PP′,则PE⊥CO于E, ∴OE=EC= ∴y=;(6分) ∴x2-2x-3= 解得x1=,x2=(不合题意,舍去) ∴P点的坐标为(,)(8分) (3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2-2x-3), 易得,直线BC的解析式为y=x-3 则Q点的坐标为(x,x-3); S四边形ABPC=S△ABC+S△BPQ+S△CPQ =AB•OC+QP•BF+QP•OF = =(10分) 当时,四边形ABPC的面积最大 此时P点的坐标为,四边形ABPC的面积的最大值为.(12分)
复制答案
考点分析:
相关试题推荐
如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,在AB边上取动点P,连接DP,作PQ⊥DP,使得PQ交射线BC于点E,设AP=x,BE=y.
(1)当BC=4时,试写出y关于x的函数关系式;
(2)在满足(1)的条件下,若△APD是等腰三角形时,求BE的长;
(3)在满足(1)的条件下,点E能否与C点重合?若存在,求出相应的AP的长;若不存在,请说明理由;
(4)当BC在什么范围内,存在点P,使得PQ经过C(直接写出结果).
manfen5.com 满分网
查看答案
如图,直线y=x+n与x轴交于点A,与y轴交于点B,与双曲线manfen5.com 满分网在第一象限内交于点C(m,4).
(1)求m和n的值;
(2)若将直线AB绕点A顺时针旋转15°得到直线l,求直线l的解析式.

manfen5.com 满分网 查看答案
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.

manfen5.com 满分网 查看答案
某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)
(1)请把条形统计图补充完整;
(2)样本中D级的学生人数占全班学生人数的百分比是______
(3)扇形统计图中A级所在的扇形的圆心角度数是______
(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为______人.manfen5.com 满分网
查看答案
如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).
(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;
(2)分别写出B、C两点的对应点B′、C′的坐标;
(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.