如图,抛物线y=ax
2+bx-3与x轴交于两点A(1,0)、B(3,0),与y轴交于点D.
(1)求抛物线的解析式;
(2)在抛物线是否存在一点P,使得△BDP是以BD为斜边的直角三角形,若存在,请求出点P的坐标;若不存在,请说明理由;
(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
在等腰Rt△ABC中,AC=BC,点D在BC上,过点D作DE⊥AD,过点B作BE⊥AB交DE于点E,DE交AB于F.
(1)求证:AD=DE;
(2)若BD=2CD,求证:AF=5BF.
查看答案
某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,现在投入资金1500万元购进生产线进行批量生产,已知生产每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,一年的销售量为20万件;销售单价每增加10元,年销售量就减少1万件.公司同时规定:该产品售价不得低于100元/件且不得超过180元/件.设销售单价为x(元),年销售量为y(万件),年盈利(年获利=处销售额-生产成本-投资)为w(万元).
(1)y与x的函数关系式并直接写出自变量x的取值范围;
(2)请说明第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元,若能,求出第二年的产品售价;若不能,请说明理由.
查看答案
如图,Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交斜边AB于点D,
,连接AF交BC于G,连接CF交AB于E
(1)求证:DF=EF;
(2)DE=3,FD=5,求⊙O的半径.
查看答案
如图,△ABC中,A(1,-1)、B(1,-3)、C(4,-3).
(1)△A
1B
1C
1是△ABC关于y轴的对称图形,则点A的对称点A
1的坐标是______;
(2)将△ABC绕点(0,1)逆时针旋转90°得到△A
2B
2C
2,则B点的对应点B
2的坐标是______;
(3)△A
1B
1C
1与△A
2B
2C
2是否关于某条直线成轴对称?若成轴对称,则对称轴的解析式是______.
查看答案
小昆和小明玩摸牌和转转盘游戏,游戏规则如下:先摸牌,有两张背面完全相同、牌面数字是2和6的扑克牌,背面朝上洗匀后从中抽出一张,抽得的牌面数字即为得分:后转动一个转盘.转盘被分4个相等的扇形,并标上1,2、3、4,转盘停止后,指针所在区域的数字即为得分(若指针在分格线上,则重转一次,直到指针指向某一区域为止).
(1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;
(2)若两次得分之和为总分,写出所有的总分.小昆和小明约定:总分是3的倍数,则小昆获胜;总分不是3的倍数,则小明获胜,这个游戏公平吗?为什么?
查看答案