满分5 > 初中数学试题 >

如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3...

如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标;
(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)已知了抛物线图象上的三点坐标,可用待定系数法求出该抛物线的解析式,进而可用配方法或公式法求得顶点D的坐标. (2)根据B、C、D的坐标,可求得△BCD三边的长,然后判断这三条边的长是否符合勾股定理即可. (3)假设存在符合条件的P点;首先连接AC,根据A、C的坐标及(2)题所得△BDC三边的比例关系,即可判断出点O符合P点的要求,因此以P、A、C为顶点的三角形也必与△COA相似,那么分别过A、C作线段AC的垂线,这两条垂线与坐标轴的交点也符合点P点要求,可根据相似三角形的性质(或射影定理)求得OP的长,也就得到了点P的坐标. 【解析】 (1)设该抛物线的解析式为y=ax2+bx+c, 由抛物线与y轴交于点C(0,-3),可知c=-3, 即抛物线的解析式为y=ax2+bx-3, 把A(-1,0)、B(3,0)代入, 得 解得a=1,b=-2. ∴抛物线的解析式为y=x2-2x-3, ∴顶点D的坐标为(1,-4). (2)以B、C、D为顶点的三角形是直角三角形, 理由如下: 过点D分别作x轴、y轴的垂线,垂足分别为E、F. 在Rt△BOC中,OB=3,OC=3, ∴BC2=18, 在Rt△CDF中,DF=1,CF=OF-OC=4-3=1, ∴CD2=2, 在Rt△BDE中,DE=4,BE=OB-OE=3-1=2, ∴BD2=20, ∴BC2+CD2=BD2,故△BCD为直角三角形. (3)连接AC,则容易得出△COA∽△PCA,又△PCA∽△BCD,可知Rt△COA∽Rt△BCD,得符合条件的点为O(0,0). 过A作AP1⊥AC交y轴正半轴于P1,可知Rt△CAP1∽Rt△COA∽Rt△BCD, 求得符合条件的点为. 过C作CP2⊥AC交x轴正半轴于P2,可知Rt△P2CA∽Rt△COA∽Rt△BCD, 求得符合条件的点为P2(9,0). ∴符合条件的点有三个:O(0,0),,P2(9,0).
复制答案
考点分析:
相关试题推荐
某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.
(1)若该超市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?
(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案.
查看答案
如图,AB为⊙O的直径,BC为⊙O的切线,AC交⊙O于点E,D为AC上一点,∠AOD=∠C.
(1)求证:OD⊥AC;
(2)若AE=8,manfen5.com 满分网,求OD的长.

manfen5.com 满分网 查看答案
甲、乙两位同学住在同一小区,在同一中学读书,一天恰好在同一时间骑自行车沿同一线路上学,小区离学校有9km,甲以匀速行驶,花了30min到校,乙的行程信息如图中折线O-A-B-C所示,分别用y1,y2表示甲、乙在时间x(min)时的行程,请回答下列问题:
(1)分别用含x的解析式表示y1,y2(标明x的范围),并在图中画出函数y1的图象;
(2)甲、乙两人在途中有几次相遇?分别是出发后的多长时间相遇?

manfen5.com 满分网 查看答案
某校开展了以“人生观、价值观“为主题的班队活动.活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调査(要求每位同学只选自己最认可的一项观点),并制成了如右扇形统计图.
(1)该班学生选择“和谐”观点的有______人,在扇形统计图中,“和谐“观点所在扇形区域的圆心角是______
(2)如果该校有1500名初三学生.利用样本估计选择“感恩”观点的初三学生约有______人.
(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查.求恰好选到“和谐“和“感恩“观点的概率.

manfen5.com 满分网 查看答案
观察下面的变形规律:manfen5.com 满分网=1-manfen5.com 满分网; manfen5.com 满分网=manfen5.com 满分网-manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网-manfen5.com 满分网;…
解答下面的问题:
(1)若n为正整数,请你猜想manfen5.com 满分网=______
(2)证明你猜想的结论;
(3)求和:manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.