如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
(1)求证:△AMB≌△ENB;
(2)①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
(3)当AM+BM+CM的最小值为
时,求正方形的边长.
考点分析:
相关试题推荐
,某公司要将100吨货物运往某地销售,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车800元;租用1辆乙型汽车需费用850元,且同一种型号汽车每辆租车费用相同.
若公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.
查看答案
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线;
(3)若⊙O的半径为5,∠BAC=60°,求DE的长.
查看答案
我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号).
查看答案
如图,是一台名为帕斯卡三角的仪器,当实心小球从入口落下,它依次碰到每层菱形挡块时,会等可能的向左或向右落下.
(1)分别求出小球通过第2层的A位置、第3层的B位置、第4层的C位置、第5层的D位置的概率;
(2)设菱形挡块的层数为n,则小球通过第n层的从左边算起第2个位置的概率是多少?
查看答案
先化简,再求值:(
-4)÷
,其中x=-1.
查看答案