满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(...

如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数表达式;
(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;
(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).

manfen5.com 满分网
(1)依题意联立方程组求出a,b的值后可求出函数表达式. (2)分别令x=0,y=0求出A、B、C三点的坐标,然后易求直线CM的解析式.证明四边形ANCP为平行四边形可求出点P的坐标. (3)求出直线y=-x+3与坐标轴的交点D,B的坐标.然后证明∠AFE=∠ABE=45°,AE=AF,可证得三角形AEF是等腰直角三角形. (4)根据(3)中所求,即可得出当E是直线y=-x+3上任意一点时,(3)中的结论仍成立. 【解析】 (1)根据题意,得, 解得, ∴抛物线对应的函数表达式为y=x2-2x-3; (2)存在.连接AP,CP, 如下图所示: 在y=x2-2x-3中,令x=0,得y=-3. 令y=0,得x2-2x-3=0, ∴x1=-1,x2=3. ∴A(-1,0),B(3,0),C(0,-3). 又y=(x-1)2-4, ∴顶点M(1,-4), 容易求得直线CM的表达式是y=-x-3. 在y=-x-3中,令y=0,得x=-3. ∴N(-3,0), ∴AN=2, 在y=x2-2x-3中,令y=-3,得x1=0,x2=2. ∴CP=2, ∴AN=CP. ∵AN∥CP, ∴四边形ANCP为平行四边形,此时P(2,-3); (3) △AEF是等腰直角三角形. 理由:在y=-x+3中,令x=0,得y=3,令y=0,得x=3. ∴直线y=-x+3与坐标轴的交点是D(0,3),B(3,0). ∴OD=OB, ∴∠OBD=45°, 又∵点C(0,-3), ∴OB=OC. ∴∠OBC=45度, 由图知∠AEF=∠ABF=45°,∠AFE=∠ABE=45°, ∴∠EAF=90°,且AE=AF. ∴△AEF是等腰直角三角形; (4)当点E是直线y=-x+3上任意一点时,(3)中的结论:△AEF是等腰直角三角形成立.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
(1)求证:△AMB≌△ENB;
(2)①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
(3)当AM+BM+CM的最小值为manfen5.com 满分网时,求正方形的边长.

manfen5.com 满分网 查看答案
,某公司要将100吨货物运往某地销售,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车800元;租用1辆乙型汽车需费用850元,且同一种型号汽车每辆租车费用相同.
若公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.
查看答案
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线;
(3)若⊙O的半径为5,∠BAC=60°,求DE的长.

manfen5.com 满分网 查看答案
我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号).
manfen5.com 满分网
查看答案
如图,是一台名为帕斯卡三角的仪器,当实心小球从入口落下,它依次碰到每层菱形挡块时,会等可能的向左或向右落下.
(1)分别求出小球通过第2层的A位置、第3层的B位置、第4层的C位置、第5层的D位置的概率;
(2)设菱形挡块的层数为n,则小球通过第n层的从左边算起第2个位置的概率是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.