满分5 >
初中数学试题 >
二次根式有意义时,x的取值范围是( ) A.x≥ B.x≤- C.x≥- D.x...
二次根式
有意义时,x的取值范围是( )
A.x≥
B.x≤-
C.x≥-
D.x≤
考点分析:
相关试题推荐
计算3
-2的结果是( )
A.-6
B.-
C.
D.
查看答案
问题背景:
在△ABC中,AB、BC、AC三边的长分别为
、
、
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上______;
思维拓展:
(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为
、
、
(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积;
探索创新:
(3)若△ABC三边的长分别为
、
、
(m>0,n>0,且m≠n),试运用构图法求出这三角形的面积.
查看答案
已知:抛物线y=a(x-2)
2+b(ab<0)的顶点为A,与x轴的交点为B,C(点B在点C的左侧).
(1)直接写出抛物线对称轴方程;
(2)若抛物线经过原点,且△ABC为直角三角形,求a,b的值;
(3)若D为抛物线对称轴上一点,则以A,B,C,D为顶点的四边形能否为正方形?若能,请写出a,b满足的关系式;若不能,说明理由.
查看答案
某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买者两种笔记本共30本.
(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?
(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的
,但又不少于B种笔记本数量的
,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.
①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;
②请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?
查看答案
如图,将△ABC的顶点A放在⊙O上,现从AC与⊙O相切于点A(如图1)的位置开始,将△ABC绕着点A顺时针旋转,设旋转角为α(0°<α<120°),旋转后AC,AB分别与⊙O交于点E,F,连接EF(如图2).已知∠BAC=60°,∠C=90°,AC=8,⊙O的直径为8.
(1)在旋转过程中,有以下几个量:①弦EF的长;②
的长;③∠AFE的度数;④点O到EF的距离.其中不变的量是______(填序号);
(2)当BC与⊙O相切时,请直接写出α的值,并求此时△AEF的面积.
查看答案