满分5 > 初中数学试题 >

如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2)...

如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tan∠OAC=2.
(1)求抛物线对应的二次函数的解析式;
(2)在抛物线的对称轴l上是否存在点P,使∠APC=90°?若存在,求出点P的坐标;若不存在,请说明理由;manfen5.com 满分网
(3)如图所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线l′∥l,交抛物线于点N,连接CN、BN,设点M的横坐标为t.当t为何值时,△BCN的面积最大?最大面积为多少?
manfen5.com 满分网
(1)已知了C点的坐标,即可得到OC的长,根据∠OAC的正切值即可求出OA的长,由此可得到A点的坐标,将A、C的坐标代入抛物线中,即可确定该二次函数的解析式; (2)根据抛物线的解析式即可确定其对称轴方程,由此可得到点P的横坐标;若∠APC=90°,则∠PAE和∠CPD是同角的余角,因此两角相等,则它们的正切值也相等,由此可求出线段PE的长,即可得到点P点的坐标;(用相似三角形求解亦可) (3)根据B、C的坐标易求得直线BC的解析式,已知了点M的横坐标为t,根据直线BC和抛物线的解析式,即可用t表示出M、N的纵坐标,由此可求得MN的长,以MN为底,B点横坐标的绝对值为高,即可求出△BNC的面积(或者理解为△BNC的面积是△CMN和△MNB的面积和),由此可得到关于S(△BNC的面积)、t的函数关系式,根据所得函数的性质即可求得S的最大值及对应的t的值. 【解析】 (1)∵抛物线y=x2+bx+c过点C(0,2), ∴x=2; 又∵tan∠OAC==2, ∴OA=1,即A(1,0); 又∵点A在抛物线y=x2+bx+2上, ∴0=12+b×1+2,b=-3; ∴抛物线对应的二次函数的解析式为y=x2-3x+2; (2)存在. 过点C作对称轴l的垂线,垂足为D,如图所示, ∴x=-; ∴AE=OE-OA=-1=, ∵∠APC=90°, ∴tan∠PAE=tan∠CPD, ∴,即=, 解得PE=或PE=, ∴点P的坐标为(,)或(,).(备注:可以用勾股定理或相似解答) (3)如图所示,易得直线BC的解析式为:y=-x+2, ∵点M是直线l′和线段BC的交点, ∴M点的坐标为(t,-t+2)(0<t<2), ∴MN=-t+2-(t2-3t+2)=-t2+2t, ∴S△BCN=S△MNC+S△MNB=MN▪t+MN▪(2-t), =MN▪(t+2-t)=MN=-t2+2t(0<t<2), ∴S△BCN=-t2+2t=-(t-1)2+1, ∴当t=1时,S△BCN的最大值为1. 备注:如果没有考虑取值范围,可以不扣分.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.

manfen5.com 满分网 查看答案
如图,已知正方形ABCD的边长是2,点E是AB的中点,延长BC到点F使CF=AE.
(1)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.判断AH与ED的位置关系,并说明理由;
(2)求AG的长.

manfen5.com 满分网 查看答案
八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,走了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度?
查看答案
某市体育中考现场考试内容有三项:50米跑为必测项目;另外在立定跳远和实心球中选一项,在坐位体前屈和1分钟跳绳中选一项.
(1)每位考生有______种选择方案;
(2)若用A、B、C…等字母分别表示上述各种方案,请用画树状图或列表的方法求小明与小刚选择同一种方案的概率.
查看答案
完成下列各题:
(1)如图1,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.
(2)如图2,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,tanC=manfen5.com 满分网.求腰AB的长.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.