满分5 >
初中数学试题 >
在0,-l,2,-1.5这四个数中,是负整数的是( ) A.-1 B.0 C.2...
在0,-l,2,-1.5这四个数中,是负整数的是( )
A.-1
B.0
C.2
D.-1.5
考点分析:
相关试题推荐
如图,抛物线y=ax
2+bx+c与x轴交A(-1,0)、B(3,0)两点,交y轴于点C(0,-3),
(1)求此抛物线的解析式;
(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为9,若存在,求出点D的坐标;若不存在.说明理由;
(3)在(2)的情况下,P是线段AD上的一个动点,过P点作y轴的平行线交抛物线于Q点,求线段PQ长度的最大值.
查看答案
如图,已知△ABC,以边BC为直径的圆与边AB交于点D,点E为弧BD的中点,AF为△ABC角平分线,且AF⊥EC.
(1)求证:AC与⊙O相切;
(2)若AC=6,BC=8,求EC的长.
查看答案
据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算
(9-1)、
(9+1)与
(25-1)、
(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.
查看答案
如图,在直角坐标系中,射线OA与x轴正半轴重合,以O为旋转中心,将OA逆时针旋转:OA⇒OA
1⇒OA
2⇒…⇒OA
n…,旋转角∠AOA
1=2°,∠A
1OA
2=4°,∠A
2OA
3=8°,…要求下一个旋转角(不超过360°)是前一个旋转角的2倍.当旋转角大于360°时,又从2°开始旋转,即∠A
8OA
9=2°,∠A
9OA
10=4°,…周而复始.则当OA
n与y 轴正半轴第一次重合时,n的值为
.(提示:2+2
2+2
3+2
4+2
5+2
6+2
7+2
8=510)
查看答案
如图,点A、B在直线MN上,AB=14cm,⊙A、⊙B的半径均为1cm,⊙A以每秒2cm的速度自左向右运动,与此同时,⊙B的半径不断增大,其半径r(cm)与时间t(秒)之间的关系为r=1+t(t≥0),则当点出发后
秒两圆相切.
查看答案