满分5 > 初中数学试题 >

如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4, (1...

如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

manfen5.com 满分网
(1)根据AB=AC,可得∠ABC=∠C,利用等量代换可得∠ABC=∠D然后即可证明△ABE∽△ADB. (2)根据△ABE∽△ADB,利用其对应边成比例,将已知数值代入即可求得AB的长. (3)连接OA,根据BD为⊙O的直径可得∠BAD=90°,利用勾股定理求得BD,然后再求证∠OAF=90°即可. (1)证明:∵AB=AC, ∴∠ABC=∠C(等边对等角), ∵∠C=∠D(同弧所对的圆周角相等), ∴∠ABC=∠D(等量代换), 又∵∠BAE=∠DAB, ∴△ABE∽△ADB, (2)【解析】 ∵△ABE∽△ADB, ∴, ∴AB2=AD•AE=(AE+ED)•AE=(2+4)×2=12, ∴AB=. (3)【解析】 直线FA与⊙O相切,理由如下: 连接OA,∵BD为⊙O的直径, ∴∠BAD=90°, ∴=4 BF=BO=, ∵AB=, ∴BF=BO=AB, ∴∠OAF=90°, ∴OA⊥AF, ∴直线FA与⊙O相切.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,某数学课外活动小组测量电视塔AB的高度.他们借助一个高度为30m的建筑物CD进行测量,在点C处测得塔顶B的仰角为45°,在点E处测得B的仰角为37°(B、D、E三点在一条直线上).求电视塔的高度h.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案
研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.
活动结果:摸球实验活动一共做了50次,统计结果如下表:
球的颜色无记号有记号
红色黄色红色黄色
摸到的次数182822
推测计算:由上述的摸球实验可推算:
(1)盒中红球、黄球各占总球数的百分比分别是多少?
(2)盒中有红球多少个?
查看答案
如图,在平行四边形ABCD中,E为BC中点,AE的延长线与DC的延长线相交于点F.
(1)证明:∠DFA=∠FAB;
(2)证明:△ABE≌△FCE.

manfen5.com 满分网 查看答案
如图,已知直线y=-2x经过点P(-2,a),点P关于y轴的对称点P′在反比例函数manfen5.com 满分网(k≠0)的图象上.
(1)求a的值;
(2)直接写出点P′的坐标;
(3)求反比例函数的解析式.

manfen5.com 满分网 查看答案
已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.