满分5 > 初中数学试题 >

初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校...

初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了______名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计该市近20 000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)
manfen5.com 满分网
(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A级的有50人,占部分八年级学生的25%,即可求得总人数; (2)由(1)可知:C级人数为:200-120-50=30人,将图1补充完整即可; (3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以先求出:360°×(1-25%-60%)=54度; (4)从扇形统计图可知,达标人数占得百分比为:25%+60%=85%,再估计该市近20000名初中生中达标的学习态度就很容易了. 【解析】 (1)50÷25%=200(人); (2)200-120-50=30(人). 画图正确. (3)C所占圆心角度数=360°×(1-25%-60%)=54度. (4)20000×(25%+60%)=17000(名). ∴估计该市初中生中大约有17000名学生学习态度达标.
复制答案
考点分析:
相关试题推荐
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,某数学课外活动小组测量电视塔AB的高度.他们借助一个高度为30m的建筑物CD进行测量,在点C处测得塔顶B的仰角为45°,在点E处测得B的仰角为37°(B、D、E三点在一条直线上).求电视塔的高度h.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案
研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.
活动结果:摸球实验活动一共做了50次,统计结果如下表:
球的颜色无记号有记号
红色黄色红色黄色
摸到的次数182822
推测计算:由上述的摸球实验可推算:
(1)盒中红球、黄球各占总球数的百分比分别是多少?
(2)盒中有红球多少个?
查看答案
如图,在平行四边形ABCD中,E为BC中点,AE的延长线与DC的延长线相交于点F.
(1)证明:∠DFA=∠FAB;
(2)证明:△ABE≌△FCE.

manfen5.com 满分网 查看答案
如图,已知直线y=-2x经过点P(-2,a),点P关于y轴的对称点P′在反比例函数manfen5.com 满分网(k≠0)的图象上.
(1)求a的值;
(2)直接写出点P′的坐标;
(3)求反比例函数的解析式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.