如图,已知反比例函数
的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数
的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长.
考点分析:
相关试题推荐
某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
查看答案
如图,斜坡AC的坡度(坡比)为1:
,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.
查看答案
如图,在矩形ABCD中,AB=16cm,AD=6cm,动点P、Q分别从A、C同时出发,点P以每秒3cm的速度向B移动,一直达到B止,点Q以每秒2cm的速度向D移动.
(1)P、Q两点出发后多少秒时,四边形PBCQ的面积为36cm
2;
(2)是否存在某一时刻,使PBCQ为正方形?
查看答案
已知⊙O的直径AB、CD互相垂直,弦AE交CD于F,若⊙O的半径为R,
求证:AE•AF=2R
2.
查看答案
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-l,-2和-3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=x-3上的概率.
查看答案