满分5 > 初中数学试题 >

已知关于x的方程mx2-(3m-1)x+2m-2=0. (1)求证:无论m取任何...

已知关于x的方程mx2-(3m-1)x+2m-2=0.
(1)求证:无论m取任何实数时,方程恒有实数根;
(2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式;
(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围.
(1)本题中,二次项系数m的值不确定,分为m=0,m≠0两种情况,分别证明方程有实数根; (2)设抛物线与x轴两交点的横坐标为x1,x2,则两交点之间距离为|x1-x2|=2,再与根与系数关系的等式结合变形,可求m的值,从而确定抛物线的解析式; (3)分三种情况:只与抛物线y1有两个交点,只与抛物线y2有两个交点,直线过抛物线y1、y2的交点,观察图象,分别求出b的取值范围. 【解析】 (1)分两种情况讨论. ①当m=0时,方程为x-2=0,x=2. ∴m=0时,方程有实数根. ②当m≠0时,则一元二次方程的根的判别式 △=[-(3m-1)]2-4m(2m-2) =9m2-6m+1-8m2+8m=m2+2m+1 =(m+1)2≥0, ∴m≠0时,方程有实数根. 故无论m取任何实数时,方程恒有实数根. 综合①②可知,m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根; (2)设x1,x2为抛物线y=mx2-(3m-1)x+2m-2与x轴交点的横坐标, 则x1+x2=,x1x2=. 由|x1-x2|= = = = =||. 由|x1-x2|=2,得||=2, ∴=2或=-2. ∴m=1或m=-. ∴所求抛物线的解析式为y1=x2-2x, y2=-(x-2)(x-4). 其图象如右图所示: (3)在(2)的条件下y=x+b与抛物线 y1,y2组成的图象只有两个交点,结合图象求b的取值范围. , 当y1=y时,得x2-3x-b=0,有△=9+4b=0得b=-. 同理,△=9-4(8+3b)=0,得b=-. 观察图象可知, 当b<-,或b>-直线y=x+b与(2)中的图象只有两个交点; 由, 当y1=y2时,有x=2或x=1. 当x=1时,y=-1. 所以过两抛物线交点(1,-1),(2,0)的直线为y=x-2. 综上所述可知:当b<-或b>-或b=-2时, 直线y=x+b与(2)中图象只有两个交点.
复制答案
考点分析:
相关试题推荐
某校初三年级共有学生540人,张老师对该年级学生的升学志愿进行了一次抽样调查,他对随机抽取的一个样本进行了数据整理,绘制了两幅不完整的统计图(图甲和图乙)如下.请根据图中提供的信息解答下列问题:manfen5.com 满分网
(1)求张老师抽取的样本容量;
(2)把图甲和图乙都补充绘制完整;
(3)请估计全年级填报就读职高的学生人数.
查看答案
已知:如图,直线PA交⊙O于A、E两点,PA的垂线DC切⊙O于点C,过A点作⊙O的直径AB.
(1)求证:AC平分∠DAB;
(2)若DC=4,DA=2,求⊙O的直径.

manfen5.com 满分网 查看答案
已知相邻的两根电线杆AB与CD高度相同,且相距BC=50m.小王为测量电线杆的高度,在两根电线杆之间某一处E架起测角仪,如图所示,分别测得两根电线杆顶端的仰角为45°、23°,已知测角仪EF高1.5m,请你帮他算出电线杆的高度.
(精确到0.1m,参考数据:sin23°≈0.39、cos23°≈0.92、tan23°≈0.43)

manfen5.com 满分网 查看答案
某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间.现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米,若使生产出的布匹刚好制成成衣,求应有多少人去生产成衣?
查看答案
如图,点C在反比例函数manfen5.com 满分网的图象上,过点C作CD⊥y轴,交y轴负半轴于点D,且△ODC的面积是3.
(1)求反比例函数manfen5.com 满分网的解析式;
(2)若CD=1,求直线OC的解析式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.