满分5 > 初中数学试题 >

【问题情境】 已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的...

【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+manfen5.com 满分网)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+manfen5.com 满分网(x>0)的图象和性质.
①填写下表,画出函数的图象;
xmanfen5.com 满分网manfen5.com 满分网manfen5.com 满分网1234
y       
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+manfen5.com 满分网(x>0)的最小值.

【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.

manfen5.com 满分网
(1)①把x的值代入解析式计算即可;②根据图象所反映的特点写出即可;③根据完全平方公式(a+b)2=a2+2ab+b2,进行配方即可得到最小值; (2)根据完全平方公式(a+b)2=a2+2ab+b2,进行配方得到y=2[+2],即可求出答案. 【解析】 (1)①故答案为:,,,2,,,. 函数y=x+的图象如图: ②答:函数两条不同类型的性质是:当0<x<1时,y 随x的增大而减小,当x>1时,y 随x的增大而增大;当x=1时,函数y=x+(x>0)的最小值是2. ③【解析】 ①y=x+=+-2•+2•, =+2, 当-=0,即x=1时,函数y=x+(x>0)的最小值是2, ②y=x+=+=-2, ∵x>0, ∴的值是正数,并且任何一个正数都行, ∴此时不能求出最值, 答:函数y=x+(x>0)的最小值是2. (2)答:矩形的面积为a(a为常数,a>0),当该矩形的长为时,它的周长最小,最小值是4.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
查看答案
(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC;
(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:manfen5.com 满分网
(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC三者之间有何数量关系,并给予证明.
manfen5.com 满分网
查看答案
已知关于x的方程mx2-(3m-1)x+2m-2=0.
(1)求证:无论m取任何实数时,方程恒有实数根;
(2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式;
(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围.
查看答案
某校初三年级共有学生540人,张老师对该年级学生的升学志愿进行了一次抽样调查,他对随机抽取的一个样本进行了数据整理,绘制了两幅不完整的统计图(图甲和图乙)如下.请根据图中提供的信息解答下列问题:manfen5.com 满分网
(1)求张老师抽取的样本容量;
(2)把图甲和图乙都补充绘制完整;
(3)请估计全年级填报就读职高的学生人数.
查看答案
已知:如图,直线PA交⊙O于A、E两点,PA的垂线DC切⊙O于点C,过A点作⊙O的直径AB.
(1)求证:AC平分∠DAB;
(2)若DC=4,DA=2,求⊙O的直径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.