连接EF.根据角平分线的性质知AF:FC=DE:EC,由平行线分线段成比例知AF:FC=DE:EC,由这两个比例式和已知条件“BE=CE”知AB=2EC•=2DE,即AB=2DE.
证明:连接EF.
∵∠ABC=2∠C,BF为∠B的平分线,
∴∠FBC=∠C=∠ABC,
∴BF=CF(等角对等边);
又∵BE=CE(已知),
∴EF⊥BC;
∵AD⊥BC,
∴EF∥AD,
∴AF:FC=DE:EC(平行线分线段成比例);
而AB:BC=AF:FC(角平分线的性质),
∴AB:BC=DE:EC(等量代换),
∴AB=2EC•=2DE,即AB=2DE.