如图,已知△ABC内接于半径为4的☉0,过0作BC的垂线,垂足为F,且交☉0于P、Q两点.OD、OE的长分别是抛物线y=x
2+2mx+m
2-9与x轴的两个交点的横坐标.
(1)求抛物线的解析式;
(2)是否存在直线l,使它经过抛物线与x轴的交点,并且原点到直线l的距离是2?如果存在,请求出直线l的解析式;如果不存在,请说明理由.
考点分析:
相关试题推荐
某公司要招聘甲、乙两类员工共150人,甲、乙两类员工的月工资分别为600元和1000元.
(1)现要求乙类员工的人数不少于甲类员工的人数2倍,问甲、乙两类员工各招聘多少人时,可使得公司每月所付工资最少,最少工资总额是多少?
(2)在招聘两类员工的月工资总额最少的条件下,由于完成项目优秀,公司决定用10万元钱奖励所招聘的这批员工,其中甲类员工的奖金总数不大于乙类员工的奖金总数,但每人不得低于200元,若以百元为单位发放,试问有几种发放方案请具体写出(员工得到的奖金为整百).
查看答案
矩形ABCD中,AC、BD相交于点O,且∠ADB=30°,∠ADC的平分线交BC于E,连接OE.
(1)求∠COE的度数.
(2)若AB=4,求OE的长.
查看答案
如图,直线y=
x+2分别交x、y轴于点A、C,P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,S
△ABP=9.
(1)求点P的坐标;
(2)设点R与点P在同一个反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴,T为垂足,当△BRT与△AOC相似时,求点R的坐标.
查看答案
已知AD⊥BC,BE=CE,∠ABC=2∠C,BF为∠B的平分线.
求证:AB=2DE.
查看答案
已知
+|4-b|=0,先化简,再求值.
(
+
)÷
.
查看答案