满分5 > 初中数学试题 >

某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进...

某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.
(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价-进价)
(1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数; (2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润. 【解析】 (1)设购进甲种商品x件,购进乙商品y件, 根据题意得:, 解得:, 答:商店购进甲种商品40件,购进乙种商品60件; (2)设商店购进甲种商品a件,则购进乙种商品(100-a)件, 根据题意列得:, 解得:20≤a≤22, ∵总利润W=5a+10(100-a)=-5a+1000,W是关于a的一次函数,W随a的增大而减小, ∴当a=20时,W有最大值,此时W=900,且100-20=80, 答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
复制答案
考点分析:
相关试题推荐
某种子培育基地用A、B、C、D四种型号的小麦种子共2000粒进行发芽实验,将从中选出发芽率高的种子进行推广.通过实验可知,C型号种子的发芽率为95%,根据实验数据绘制了如下两幅尚不完整的统计图.
manfen5.com 满分网
(1)根据图甲求用于实验的D型号种子的粒数,并将图乙的统计图补充完整.
(2)通过计算,回答应选哪一个型号的种子进行推广.
查看答案
如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.
求证:AE∥BC.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网÷(x-1-manfen5.com 满分网),其中x=manfen5.com 满分网
查看答案
计算:(-1)2012×(3-π)-manfen5.com 满分网+manfen5.com 满分网
查看答案
如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…Mn分别为边B1B2,B2B3,B3B4,…,BnBn+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△BnCnMn的面积为Sn,则Sn=    .(用含n的式子表示) 
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.