满分5 > 初中数学试题 >

(1)探究新知: ①如图1,已知AD∥BC,AD=BC,点M,N是直线CD上任意...

(1)探究新知:
①如图1,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.
求证:△ABM与△ABN的面积相等.
②如图2,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.
manfen5.com 满分网
(1)①由于CD∥AB,所以△ABM和△ABN中,AB边上的高相等,则两个三角形是同底等高的三角形,所以它们的面积相等; ②分别过D、E作AB的垂线,设垂足为H、K;通过证△DAH≌△EBK,来得到DH=KE;则所求的两个三角形是同底等高的三角形,由此得证; (2)根据A、C的坐标,即可求得抛物线的解析式,进而可求出A、D的解析式;用待定系数法可确定直线AD的解析式;假设存在符合条件的E点,过C作CD⊥x轴于D,交直线AD于H;过E作EF⊥x轴于F,交直线AD于P;根据抛物线的对称轴方程及直线AD的解析式,易求得H点的坐标,即可得到CH的长;设出E点横坐标,根据直线AD和抛物线的解析式,可表示出P、E的纵坐标,即可得到PE的长;根据(1)题得到的结论,当PE=CH时,所求的两个三角形面积相等,由此可列出关于E点横坐标的方程,从而求出E点的坐标.(需注意的是E点可能在直线AD的上方或下方,这两种情况下PE的表达式会有所不同,要分类讨论) 证明:(1)①分别过点M,N作ME⊥AB,NF⊥AB,垂足分别为点E,F ∵AD∥BC,AD=BC, ∴四边形ABCD为平行四边形; ∴AB∥CD; ∴ME=NF; ∵S△ABM=,S△ABN=, ∴S△ABM=S△ABN(1分) ②【解析】 相等;理由如下:分别过点D,E作DH⊥AB,EK⊥AB,垂足分别为H,K; 则∠DHA=∠EKB=90°; ∵AD∥BE, ∴∠DAH=∠EBK; ∵AD=BE, ∴△DAH≌△EBK; ∴DH=EK;(2分) ∵CD∥AB∥EF, ∴S△ABM=,S△ABG=, ∴S△ABM=S△ABG;(3分) 【解析】 (2)存在.(4分) 因为抛物线的顶点坐标是C(1,4), 所以,可设抛物线的表达式为y=a(x-1)2+4; 又因为抛物线经过点A(3,0), 所以将其坐标代入上式,得0=a(3-1)2+4,解得a=-1; ∴该抛物线的表达式为y=-(x-1)2+4, 即y=-x2+2x+3;(5分) ∴D点坐标为(0,3); 设直线AD的表达式为y=kx+3, 代入点A的坐标,得0=3k+3,解得k=-1; ∴直线AD的表达式为y=-x+3; 过C点作CG⊥x轴,垂足为G,交AD于点H;则H点的纵坐标为-1+3=2; ∴CH=CG-HG=4-2=2;(6分) 设点E的横坐标为m,则点E的纵坐标为-m2+2m+3; 过E点作EF⊥x轴,垂足为F,交AD于点P,则点P的纵坐标为3-m,EF∥CG; 由﹙1﹚可知:若EP=CH,则△ADE与△ADC的面积相等; ①若E点在直线AD的上方, 则PF=3-m,EF=-m2+2m+3, ∴EP=EF-PF=-m2+2m+3-(3-m)=-m2+3m; ∴-m2+3m=2, 解得m1=2,m2=1;(7分) 当m=2时,PF=3-2=1,EF=1+2=3; ∴E点坐标为(2,3); 同理当m=1时,E点坐标为(1,4),与C点重合;(8分) ②若E点在直线AD的下方, 则PE=(3-m)-(-m2+2m+3)=m2-3m;(9分) ∴m2-3m=2, 解得,;(10分) 当时,E点的纵坐标为; 当时,E点的纵坐标为; ∴在抛物线上存在除点C以外的点E,使得△ADE与△ACD的面积相等,E点的坐标为E1(2,3);E2(,-);E3(,).(12分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=manfen5.com 满分网+bx+c经过B点,且顶点在直线x=manfen5.com 满分网上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.
查看答案
如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点.
(1)求证:AC•CD=PC•BC;
(2)当点P运动到AB弧中点时,求CD的长;
(3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.

manfen5.com 满分网 查看答案
如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.
(1)判断AB,AE的数量关系,并说明理由;
(2)求两个岛屿A和B之间的距离(结果精确到0.1km).
(参考数据:manfen5.com 满分网≈1.73,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)

manfen5.com 满分网 查看答案
某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
查看答案
统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):
(1)请补全频数分布表和频数分布直方图;
(2)求出日参观人数不低于22万的天数和所占的百分比;
(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.
上海世博会前20天日参观人数的频数分布表
组别(万人)组中值(万人)频数频率
7.5~14.51150.25
14.5~21.560.30
21.5~28.5250.30
28.5~35.5323


manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.