由在梯形ABCD中,AD∥BC,E是CD的中点,易证得△ADE≌△FCE,即可得EF=AE=6,CF=AD,又由AB⊥AE,AB=5,AE=6,由勾股定理即可求得BF的长,继而可求得梯形上下底之和.
【解析】
∵在梯形ABCD中,AD∥BC,
∴∠F=∠DAE,∠ECF=∠D,
∵E是CD的中点,
∴DE=CE,
在△ADE和△FCE中,
,
∴△ADE≌△FCE(AAS),
∴CF=AD,EF=AE=6,
∴AF=AE+EF=12,
∵AB⊥AE,
∴∠BAF=90°,
∵AB=5,
∴BF==13,
∴AD+BC=BC+CF=BF=13.
故答案为:13.