满分5 > 初中数学试题 >

如图,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以点O为坐...

如图,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以点O为坐标原点建立坐标系,设P、Q分别为AB、OB边上的动点它们同时分别从点A、O向B点匀速运动,速度均为1cm/秒,设P、Q移动时间为t(0≤t≤4)
(1)过点P做PM⊥OA于M,求证:AM:AO=PM:BO=AP:AB,并求出P点的坐标(用t表示);
(2)求△OPQ面积S(cm2),与运动时间t(秒)之间的函数关系式,当t为何值时,S有最大值?最大是多少?
(3)当t为何值时,△OPQ为直角三角形?
(4)证明无论t为何值时,△OPQ都不可能为正三角形.若点P运动速度不变改变Q的运动速度,使△OPQ为正三角形,求Q点运动的速度和此时t的值.

manfen5.com 满分网
(1)先证明PM∥OB,再根据相似三角形对应边成比例证明即可;利用勾股定理求出AB的长度,而AP=t,再根据对应边成比例求出AM、PM的值,P点坐标即可得到; (2)根据三角形的面积公式,P点纵坐标与OQ的长度的积的一半就是△OPQ面积,整理后根据二次函数的最值问题求解即可; (3)作OQ边上的高,根据△PON和△QPN相似,相似三角形对应边成比例,列式求解; (4)根据正三角形的性质PN垂直平分边OQ,所以无论t为何值时,△OPQ都不可能为正三角形;改变Q点速度根据正三角形的性质,0Q=2ON,PN=OQ分别列式求解即可得到Q点运动速度和时间t. (1)证明:∵∠AOB=90°,PM⊥OA, ∴PM∥OB, ∴AM:AO=PM:BO=AP:AB, ∵OA=3cm,OB=4cm, ∴在Rt△OAB中,AB===5cm, ∵AP=1•t=t, ∴, ∴PM=t,OM=OA-AM=3-t, ∴点P的坐标为(t,3-t); (2)∵OQ=1•t=tcm, ∴S△OPQ=×t×(3-t)=-t2+t =-(t-)2+, ∴当t=时,S有最大值,最大值为; (3)作PN⊥OB于N, ∵△OPQ为直角三角形, ∴△PON∽△QPN, ∴, ∴(3-t)2=t(t-t), 解得t1=3,t2=15(舍去); (4)∵ON=t,OQ=t, ∴0Q≠2ON, ∴无论t为何值时,△OPQ都不可能为正三角形; 要使△OPQ为正三角形, 则0Q=2ON=t, ∴Q点的速度为cm/s, 此时3-t=t•, 解得t=.
复制答案
考点分析:
相关试题推荐
研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y=manfen5.com 满分网x2+5x+90,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p,p(万元)均与x满足一次函数关系.(注:年利润=年销售额-全部费用)
(1)成果表明,在甲地生产并销售x吨时,P=-manfen5.com 满分网x+14,请你用含x的代数式表示甲地当年的年销售额,并求年利润W(万元)与x之间的函数关系式;
(2)成果表明,在乙地生产并销售x吨时,P=-manfen5.com 满分网+n(n为常数),且在乙地当年的最大年利润为35万元.试确定n的值;
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是manfen5.com 满分网
查看答案
如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.
(1)求证:①△AEF≌△BEC;②四边形BCFD是平行四边形;
(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.
manfen5.com 满分网
查看答案
国家教委规定“中小学生每天在校体育活动时间不低于1小时”.为此,某地区今年初中毕业生学业考试体育学科分值提高到40分,成绩记入考试总分.某中学为了了解学生体育活动情况,随机调查了720名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,所得的数据制成了的扇形统计图和频数分布直方图.根据图示,解答下列问题:
(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的恰好是“每天锻炼超过1小时”的学生的概率是多少?
(2)“没时间”的人数是多少?并补全频数分布直方图;
(3)2010年这个地区初中毕业生约为3.3万人,按此调查,可以估计2010年这个地区初中毕业生中每天锻炼未超过1小时的学生约有多少万人?
(4)请根据以上结论谈谈你的看法.
manfen5.com 满分网
查看答案
如图,已知A (-4,n),B (2,-4)是一次函数y=kx+b的图象和反比例函数manfen5.com 满分网的图象的两个交点;
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求不等式manfen5.com 满分网的解集(请直接写出答案).

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中x满足x2-7x=0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.